Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T21:48:29.149Z Has data issue: false hasContentIssue false

Mass Modelling of dwarf Spheroidal Galaxies

Published online by Cambridge University Press:  01 June 2007

Jarosław Klimentowski
Affiliation:
Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland
Ewa L. Łokas
Affiliation:
Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland
Stelios Kazantzidis
Affiliation:
Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, P.O. Box 20450, M/S 29, Stanford, CA 94309, USA
Francisco Prada
Affiliation:
Instituto de Astrofísica de Andalucia, Apartado Correos 3005, E-18080 Granada, Spain
Lucio Mayer
Affiliation:
Institute for Theoretical Physics, University of Zürich, CH-8057 Zürich, Switzerland Institute of Astronomy, Department of Physics, ETH Zürich, Wolfgang-Pauli Strasse, CH-8093 Zürich, Switzerland
Gary A. Mamon
Affiliation:
Institut d'Astrophysique de Paris(UMR 7095: CNRS and Université Pierre & Marie Curie), 98 bis Bd Arago, F-75014 Paris, France GEPI (UMR 8111: CNRS and Université Denis Diderot), Observatoire de Paris, F-92195 Meudon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the origin and properties of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. We create mock kinematic data sets by observing the dwarf in different directions. When the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. However, most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert. We model the velocity dispersion profiles of the cleaned-up kinematic samples using solutions of the Jeans equation. We show that even for such a strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and mass-to-light ratio of the dwarf with accuracy typically better than 25%.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Coleman, M. G., Da Costa, G. S., Bland-Hawthorn, J., & Freeman, K. C. 2005 AJ, 129, 1443CrossRefGoogle Scholar
den Hartog, R., & Katgert, P. 1996, MNRAS, 279, 349CrossRefGoogle Scholar
Heisler, J., Tremaine, S., & Bahcall, J. N. 1985, ApJ, 298, 8CrossRefGoogle Scholar
Kazantzidis, S., Mayer, L., Mastropietro, C., Diemand, J., Stadel, J., & Moore, B. 2004, ApJ, 608, 663CrossRefGoogle Scholar
Klimentowski, J., Łokas, E. L., Kazantzidis, S., Prada, F., Mayer, L., & Mamon, G. A. 2007, MNRAS, 378, 353CrossRefGoogle Scholar
Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999, ApJ, 522, 82CrossRefGoogle Scholar
Łokas, E. L., Mamon, G. A., & Prada, F. 2005, MNRAS, 363, 918CrossRefGoogle Scholar
Łokas, E. L., Mamon, G. A., & Prada, F. 2006, in: Mamon, G.A. et al. (eds.), Mass Profiles and Shapes of Cosmological Structures, EAS Publications Series, Volume 20, p. 113Google Scholar
Mayer, L., Governato, F., Colpi, M., Moore, B., Quinn, T., Wadsley, J., Stadel, J., & Lake, G. 2001, ApJ, 559, 754CrossRefGoogle Scholar
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., & Tozzi, P. 1999, ApJ, L19Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493CrossRefGoogle Scholar
Sérsic, J. L. 1968, Atlas de Galaxies Australes, Observatorio Astronomico, CordobaGoogle Scholar
Wojtak, R., Łokas, E. L., Mamon, G. A., Gottlöber, S., Prada, F., & Moles, M. 2007, A&A, 466, 437Google Scholar