Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T21:50:29.010Z Has data issue: false hasContentIssue false

Massive star winds and HMXB donors

Published online by Cambridge University Press:  30 December 2019

Andreas A. C. Sander*
Affiliation:
Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK email: Andreas.Sander@armagh.ac.uk Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding the complex behavior of High Mass X-ray binaries (HMXBs) is not possible without detailed information about their donor stars. While crucial, this turns out to be a challenge on multiple fronts. First, multi-wavelength spectroscopy is vital. As such systems can be highly absorbed, this is often already hard to accomplish. Secondly, even if the spectroscopic data is available, the determination of reliable stellar parameters requires sophisticated model atmospheres that accurately describe the outermost layers and the wind of the donor star.

For early-type donors, the stellar wind is radiatively driven and there is a smooth transition between the outermost layers of the star and the wind. The intricate non-LTE conditions in the winds of hot stars complicate the situation even further, as proper model atmospheres need to account for a multitude of physics to accurately provide stellar and wind parameters. The latter are especially crucial for the so-called “wind-fed” HXMBs, where the captured wind of the supergiant donor is the only source for the material accreted by the compact object.

In this review I will briefly address the different approaches for treating stellar winds in the analysis of HMXBs. The fundamentals of stellar atmosphere modeling will be discussed, also addressing the limitations of modern models. Examples from recent analysis results for particular HMXBs will be outlined. Furthermore, the path for the next generation of stellar atmosphere models will be outlined, where models can be used not only for measurement purposes, but also to make predictions and provide a laboratory for theoretical conclusions. Stellar atmospheres are a key tool in understanding HMXBs, e.g. by providing insights about the accretion of stellar winds onto the compact object, or by placing the studied systems in the correct evolutionary context in order to identify potential gravitational wave (GW) progenitors.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Anderson, L. S. 1989, ApJ, 339, 558 CrossRefGoogle Scholar
Blondin, J. M., Kallman, T. R., Fryxell, B. A., & Taam, R. E. 1990, ApJ, 356, 591 CrossRefGoogle Scholar
Bondi, H. & Hoyle, F. 1944, MNRAS, 104, 273 CrossRefGoogle Scholar
Cantiello, M., Langer, N., Brott, I., et al. 2009, A&A, 499, 279 Google Scholar
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157 CrossRefGoogle Scholar
Chaty, S., LeReun, A., Negueruela, I., et al. 2016, A&A, 591, A87 Google Scholar
Clark, J. S., Goodwin, S. P., Crowther, P. A., et al. 2002, A&A, 392, 909 Google Scholar
Conti, P. S. 1978, A&A, 63, 225 Google Scholar
Cox, N. L. J., Kaper, L., & Mokiem, M. R. 2005, A&A, 436, 661 Google Scholar
Davidson, K. & Ostriker, J. P. 1973, ApJ, 179, 585 CrossRefGoogle Scholar
Dessart, L. & Owocki, S. P. 2003, A&A, 406, L1 Google Scholar
Dreizler, S. & Werner, K. 1993, A&A, 278, 199 Google Scholar
El Mellah, I., Sundqvist, J. O., & Keppens, R. 2018, MNRAS, 475, 3240 CrossRefGoogle Scholar
El Mellah, I., Sander, A. A. C., Sundqvist, J. O., & Keppens, R. 2018, ArXiv e-prints, 1810.12933Google Scholar
Feldmeier, A., Puls, J., & Pauldrach, A. W. A. 1997, A&A, 322, 878 Google Scholar
Friend, D. B. & Abbott, D. C. 1986, ApJ, 311, 701 CrossRefGoogle Scholar
Giménez-Garca, A., Shenar, T., Torrejón, J. M., et al. 2016, A&A, 591, A26 Google Scholar
Glatzel, W. 2008, in Astronomical Society of the Pacific Conference Series, Vol. 391, Hydrogen-Deficient Stars, ed. Werner, A. & Rauch, T., 307 Google Scholar
Gräfener, G. & Hamann, W.-R. 2005, A&A, 432, 633 Google Scholar
Gräfener, G. & Hamann, W.-R. 2008, A&A, 482, 945 Google Scholar
Gräfener, G., Koesterke, L., & Hamann, W. 2002, A&A, 387, 244 Google Scholar
Hamann, W.-R. 1985, A&A, 148, 364 Google Scholar
Hamann, W.-R. & Koesterke, L. 1998, A&A, 335, 1003 Google Scholar
Hamann, W.-R. & Schmutz, W. 1987, A&A, 174, 173 Google Scholar
Hatchett, S. & McCray, R. 1977, ApJ, 211, 552 CrossRefGoogle Scholar
Hauschildt, P. H. 1992, J. Quant. Spec. Radiat. Transf., 47, 433 CrossRefGoogle Scholar
Hauschildt, P. H. & Baron, E. 1999, Journal of Computational and Applied Mathematics, 109, 41 CrossRefGoogle Scholar
Hauschildt, P. H. & Baron, E. 2004, A&A, 417, 317 Google Scholar
Hillier, D. J. 1990, A&A, 231, 116 Google Scholar
Hillier, D. J. & Miller, D. L. 1998, ApJ, 496, 407 CrossRefGoogle Scholar
Hoyle, F. & Lyttleton, R. A. 1939, Proceedings of the Cambridge Philosophical Society, 35, 405 CrossRefGoogle Scholar
Hubeny, I. 1988, Computer Physics Communications, 52, 103 CrossRefGoogle Scholar
Hubeny, I. & Lanz, T. 1995, ApJ, 439, 875 CrossRefGoogle Scholar
Hummer, D. G. & Seaton, M. J. 1963, MNRAS, 125, 437 CrossRefGoogle Scholar
in’t Zand , J. J. M. 2005, A&A, 441, L1 Google Scholar
Jiang, Y.-F., Cantiello, M., Bildsten, L., Quataert, E., & Blaes, O. 2015, ApJ, 813, 74 CrossRefGoogle Scholar
Kaper, L. 2001, in Astrophysics and Space Science Library, Vol. 264, The Influence of Binaries on Stellar Population Studies, ed. Vanbeveren, D., 125 CrossRefGoogle Scholar
Kaper, L., van der Meer, A., & Najarro, F. 2006, A&A, 457, 595 Google Scholar
Keszthelyi, Z., Puls, J., & Wade, G. A. 2017, A&A, 598, A4 Google Scholar
Krtika, J. & Kubát, J. 2004, A&A, 417, 1003 Google Scholar
Krtika, J. & Kubát, J. 2010, A&A, 519, A50 Google Scholar
Krtika, J., Kubát, J., & Krtiková, I. 2015, A&A, 579, A111 Google Scholar
Krtika, J., Kubát, J., & Skalický, J. 2012, ApJ, 757, 162 CrossRefGoogle Scholar
Lamers, H. J. G. L. M., Snow, T. P., & Lindholm, D. M. 1995, ApJ, 455, 269 CrossRefGoogle Scholar
Lucy, L. B. 1964, SAO Special Report, 167, 93 Google Scholar
Lucy, L. B. & Solomon, P. M. 1970, ApJ, 159, 879 CrossRefGoogle Scholar
Manousakis, A. & Walter, R. 2015, A&A, 584, A2 Google Scholar
Martnez-Núñez, S., Kretschmar, P., Bozzo, E., et al. 2017, Space Sci. Rev., 212, 59 CrossRefGoogle Scholar
Martnez-Núñez, S., Sander, A., Gmenez-Garca, A., et al. 2015, A&A, 578, A107 Google Scholar
Negueruela, I., Torrejón, J. M., Reig, P., et al., 2008, in A Population Explosion: The Nature and Evolution of X-ray Binaries in Diverse Environments, eds. Bandyopadhyay, R. M., Wachter, S., Gelino, D., & Gelino, C. R., AIP Conf. Ser., 1010, 252 Google Scholar
Oskinova, L. M. and Feldmeier, A. and Kretschmar, P. 2012, MNRAS, 421, 2820 CrossRefGoogle Scholar
Owocki, S. P., Castor, J. I., & Rybicki, G. B. 1988, ApJ, 335, 914 CrossRefGoogle Scholar
Pauldrach, A. 1987, A&A, 183, 295 Google Scholar
Pauldrach, A., Puls, J., & Kudritzki, R. P. 1986, A&A, 164, 86 Google Scholar
Pauldrach, A. W. A., Hoffmann, T. L., & Lennon, M. 2001, A&A, 375, 161 Google Scholar
Pauldrach, A. W. A., Kudritzki, R. P., Puls, J., Butler, K., & Hunsinger, J. 1994, A&A, 283, 525 Google Scholar
Pauldrach, A. W. A. & Puls, J. 1990, A&A, 237, 409 Google Scholar
Petrov, B., Vink, J. S., & Gräfener, G. 2016, MNRAS, 458, 1999 CrossRefGoogle Scholar
Puls, J., Urbaneja, M. A., Venero, R., et al. 2005, A&A, 435, 669 Google Scholar
Sander, A., Shenar, T., Hainich, R., et al. 2015, A&A, 577, A13 Google Scholar
Sander, A. A. C., Fürst, F., Kretschmar, P., et al. 2018, A&A, 610, A60 Google Scholar
Sander, A. A. C., Hamann, W.-R., Todt, H., Hainich, R., & Shenar, T. 2017, A&A, 603, A86 Google Scholar
Santolaya-Rey, A. E., Puls, J., & Herrero, A. 1997, A&A, 323, 488f Google Scholar
Sundqvist, J. O., Owocki, S. P., & Puls, J. 2018, A&A, 611, A17 Google Scholar
Sundqvist, J. O. & Puls, J. 2018, ArXiv e-prints, 1805.11010Google Scholar
Unsöld, A. 1951, Naturwissenschaften, 38, 525 CrossRefGoogle Scholar
Unsöld, A. 1955, Physik der Sternatmosphären, mit besonderer Berücksichtigung der Sonne. (Berlin, Springer, 1955. 2. Aufl.)CrossRefGoogle Scholar
Šurlan, B., Hamann, W.-R., Aret, A., et al. 2013, A&A, 559, A130 Google Scholar
Šurlan, B., Hamann, W.-R., Kubát, J., Oskinova, L. M., & Feldmeier, A. 2012, A&A, 541, A37 Google Scholar
van der Meer, A. and Kaper, L. and di Salvo, T., et al. 2005, A&A, 432, 999 Google Scholar
van Loon, J. T., Kaper, L., & Hammerschlag-Hensberge, G. 2001, A&A, 375, 498 Google Scholar
Vanbeveren, D. & De Loore, C. 1994, A&A, 290, 129 Google Scholar
Vanbeveren, D., Herrero, A., Kunze, D., & van Kerkwijk, M. 1993, Space Sci. Rev., 66, 395 CrossRefGoogle Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 1999, A&A, 350, 181 Google Scholar