Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:03:17.979Z Has data issue: false hasContentIssue false

Massive stellar models: rotational evolution, metallicity effects

Published online by Cambridge University Press:  12 July 2011

Sylvia Ekström
Affiliation:
Geneva Observatory, University of GenevaMaillettes 51 - Sauverny, CH-1290 Versoix, Switzerland
Cyril Georgy
Affiliation:
Geneva Observatory, University of GenevaMaillettes 51 - Sauverny, CH-1290 Versoix, Switzerland
Georges Meynet
Affiliation:
Geneva Observatory, University of GenevaMaillettes 51 - Sauverny, CH-1290 Versoix, Switzerland
André Maeder
Affiliation:
Geneva Observatory, University of GenevaMaillettes 51 - Sauverny, CH-1290 Versoix, Switzerland
Anahí Granada
Affiliation:
Geneva Observatory, University of GenevaMaillettes 51 - Sauverny, CH-1290 Versoix, Switzerland Instituto de Astrofísica de La Plata, Universidad Nacional de La Plata, Paseo del Bosque S/N, La Plata, Buenos Aires, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Be star phenomenon is related to fast rotation, although the cause of this fast rotation is not yet clearly established. The basic effects of fast rotation on the stellar structure are reviewed: oblateness, mixing, anisotropic winds. The processes governing the evolution of the equatorial velocity of a single star (transport mechanisms and mass loss) are presented, as well as their metallicity dependence. The theoretical results are compared to observations of B and Be stars in the Galaxy and the Magellanic Clouds.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Cantiello, M., Langer, N., Brott, I., de Koter, A. et al. 2009, A&A 499, 279Google Scholar
Carciofi, A. C., Domiciano de Souza, A., Magalhães, A. M., Bjorkman, J. E. et al. 2008, ApJ (Letters) 676, L41CrossRefGoogle Scholar
Chaboyer, B., Demarque, P., & Pinsonneault, M. H. 1995, ApJ 441, 865CrossRefGoogle Scholar
Chauville, J., Zorec, J., Ballereau, D., Morrell, N. et al. 2001, A&A 378, 861Google Scholar
Deupree, R. G. 1990, ApJ 357, 175CrossRefGoogle Scholar
Domiciano de Souza, A., Kervella, P., Jankov, S., Abe, L. et al. 2003, A&A 407, L47Google Scholar
Ekström, S., Meynet, G., Maeder, A., & Barblan, F. 2008, A&A 478, 467Google Scholar
Endal, A. S. & Sofia, S. 1976, ApJ 210, 184CrossRefGoogle Scholar
Faulkner, J., Roxburgh, I. W., & Strittmatter, P. A. 1968, ApJ 151, 203CrossRefGoogle Scholar
Fliegner, J. & Langer, N. 1994, in: Balona, L. A., Henrichs, H. F., & Le Contel, J. M. (eds.), Pulsation; Rotation; and Mass Loss in Early-Type Stars, IAU Symposium 162, p. 147CrossRefGoogle Scholar
Georgy, C., Meynet, G., Walder, R., Folini, D. et al. 2009, A&A 502, 611Google Scholar
Groh, J. H., Damineli, A., Hillier, D. J., Barbá, R. et al. 2009, ApJ (Letters) 705, L25CrossRefGoogle Scholar
Groh, J. H., Hillier, D. J., & Damineli, A. 2006, ApJ (Letters) 638, L33CrossRefGoogle Scholar
Heger, A. & Langer, N. 2000, ApJ 544, 1016CrossRefGoogle Scholar
Heger, A., Langer, N., & Woosley, S. E. 2000, ApJ 528, 368CrossRefGoogle Scholar
Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ 626, 350CrossRefGoogle Scholar
Huang, W. & Gies, D. R. 2006, ApJ 648, 580CrossRefGoogle Scholar
Huang, W., Gies, D. R., & McSwain, M. V. 2010, ApJ 722, 605CrossRefGoogle Scholar
Hunter, I., Brott, I., Lennon, D. J., Langer, N. et al. 2008, ApJ (Letters) 676, L29CrossRefGoogle Scholar
Kervella, P. & Domiciano de Souza, A. 2006, A&A 453, 1059Google Scholar
Kervella, P., Domiciano de Souza, A., & Bendjoya, P. 2008, A&A 484, L13Google Scholar
Kippenhahn, R. & Thomas, H.-C. 1970, in: Slettebak, A. (eds.), Stellar Rotation, IAU Colloquium 4 (Gordon and Breach Science Publishers), p. 20CrossRefGoogle Scholar
Langer, N., Fliegner, J., Heger, A., & Woosley, S. E. 1997, Nuclear Physics A 621, 457CrossRefGoogle Scholar
Maeder, A. 1999, A&A 347, 185Google Scholar
Maeder, A. 2002, A&A 392, 575Google Scholar
Maeder, A. 2009, Physics, Formation and Evolution of Rotating Stars, Astronomy and Astrophysics Library (Springer Berlin Heidelberg)CrossRefGoogle Scholar
Maeder, A., Georgy, C., & Meynet, G. 2008, A&A 479, L37Google Scholar
Maeder, A., Grebel, E. K., & Mermilliod, J.-C. 1999, A&A 346, 459Google Scholar
Maeder, A. & Meynet, G. 2000, A&A 361, 159Google Scholar
Maeder, A. & Meynet, G. 2001, A&A 373, 555Google Scholar
Maeder, A., Meynet, G., Ekström, S., & Georgy, C. 2009, Communications in Asteroseismology 158, 72Google Scholar
Martayan, C., Frémat, Y., Hubert, A.-M., Floquet, M. et al. 2006a, A&A 452, 273Google Scholar
Martayan, C., Frémat, Y., Hubert, A.-M., Floquet, M. et al. 2007, A&A 462, 683Google Scholar
Martayan, C., Hubert, A. M., Floquet, M., Fabregat, J. et al. 2006b, A&A 445, 931Google Scholar
McSwain, M. V. & Gies, D. R. 2005, ApJS 161, 118CrossRefGoogle Scholar
McSwain, M. V., Huang, W., Gies, D. R., Grundstrom, E. D. et al. 2008, ApJ 672, 590CrossRefGoogle Scholar
Meilland, A., Stee, P., Vannier, M., Millour, F. et al. 2007, A&A 464, 59Google Scholar
Meynet, G. 1996, in: Leitherer, C., Fritze-von-Alvensleben, U., & Huchra, J. (eds.), From Stars to Galaxies: the Impact of Stellar Physics on Galaxy Evolution, ASP-CS 98, p. 160Google Scholar
Meynet, G. & Maeder, A. 1997, A&A 321, 465Google Scholar
Meynet, G. & Maeder, A. 2000, A&A 361, 101Google Scholar
Meynet, G. & Maeder, A. 2003, A&A 404, 975Google Scholar
Meynet, G. & Maeder, A. 2005, A&A 429, 581Google Scholar
Monnier, J. D., Zhao, M., Pedretti, E., Thureau, N. et al. 2007, Science 317, 342CrossRefGoogle Scholar
Owocki, S. P. 2004, in: Maeder, A. & Eenens, P. (eds.), Stellar Rotation, IAU Symposium 215, p. 515CrossRefGoogle Scholar
Owocki, S. P., Cranmer, S. R., & Gayley, K. G. 1996, ApJ (Letters) 472, L115CrossRefGoogle Scholar
Owocki, S. P., Cranmer, S. R., & Gayley, K. G. 1998, in: Hubert, A. M. & Jaschek, C. (eds.), B[e] stars, Astrophysics and Space Science Library 233, p. 205CrossRefGoogle Scholar
Owocki, S. P. & Gayley, K. G. 1997, in: Nota, A. & Lamers, H. (eds.), Luminous Blue Variables: Massive Stars in Transition, ASP-CS 120, p. 121Google Scholar
Penny, L. R. & Gies, D. R. 2009, ApJ 700, 844CrossRefGoogle Scholar
Petrenz, P. & Puls, J. 2000, A&A 358, 956Google Scholar
Pinsonneault, M. H., Kawaler, S. D., Sofia, S., & Demarque, P. 1989, ApJ 338, 424CrossRefGoogle Scholar
Porter, J. M. 1996, MNRAS 280, L31CrossRefGoogle Scholar
Przybilla, N., Firnstein, M., Nieva, M. F., Meynet, G. et al. 2010, A&A 517A, 38Google Scholar
Rinehart, S. A., Houck, J. R., & Smith, J. D. 1999, AJ 118, 2974CrossRefGoogle Scholar
Roxburgh, I. W., Griffith, J. S., & Sweet, P. A. 1965, ZfA 61, 203Google Scholar
Roxburgh, I. W. & Strittmatter, P. A. 1966, MNRAS 133, 345CrossRefGoogle Scholar
Schaefer, G. H., Gies, D. R., Monnier, J. D., Richardson, N. et al. 2010, in: Rivinius, T. & Curé, M. (eds.), The Interferometric View on Hot Stars, Rev. Mexicana AyA Conference Series 38, p. 107Google Scholar
Siess, L. & Livio, M. 1997, ApJ 490, 785CrossRefGoogle Scholar
Stee, P. 2003, A&A 403, 1023Google Scholar
Townsend, R. H. D., Owocki, S. P., & Howarth, I. D. 2004, MNRAS 350, 189CrossRefGoogle Scholar
Trundle, C., Pastorello, A., Benetti, S., Kotak, R. et al. 2009, A&A 504, 945Google Scholar
Tycner, C., Lester, J. B., Hajian, A. R., Armstrong, J. T. et al. 2005, ApJ 624, 359CrossRefGoogle Scholar
Vinicius, M. M. F., Zorec, J., Leister, N. V., & Levenhagen, R. S. 2006, A&A 446, 643Google Scholar
Vink, J. S. & de Koter, A. 2005, A&A 442, 587Google Scholar
von Zeipel, H. 1924, MNRAS 84, 665CrossRefGoogle Scholar
Wisniewski, J. P. & Bjorkman, K. S. 2006, ApJ 652, 458CrossRefGoogle Scholar
Yoon, S.-C., Langer, N., & Norman, C. 2006, A&A 460, 199Google Scholar
Zhao, M., Monnier, J. D., Pedretti, E., Thureau, N. et al. 2009, ApJ 701, 209CrossRefGoogle Scholar