Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T22:43:12.622Z Has data issue: false hasContentIssue false

The mass-loss characteristics of AGB stars An observational view

Published online by Cambridge University Press:  30 December 2019

Sofia Ramstedt*
Affiliation:
Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University email: sofia.ramstedt@physics.uu.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The massive outflows of gas and dust which characterize giant stars on the Asymptotic Giant Branch (AGB), build cool circumstellar envelopes readily observed at infrared (IR) and sub-millimeter wavelengths. The observations will give the amount of matter lost by the star, the wind velocity (in the case of spectral line observations), and, when the spatial resolution is sufficient, the wind evolution over time. To gain detailed insight into the mass-loss process, we study the nearby (closer than 1 kpc) stars. Through these investigations we aim to determine the best constrained wind properties available. By combining this with theoretical results, mass-loss estimates for more distant sources can also be significantly improved. ALMA has opened up new opportunities to study the winds of AGB stars. The DEATHSTAR project (www.astro.uu.se/deathstar) has mapped the circumstellar CO emission from so far ∼50 nearby M- and C-type AGB stars. The data will initially be used to give a definitive mass-loss prescription for the sample sources, but the large-bandwidth observations opens for many different legacy projects. The current status and results are presented.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Aringer, et al. 2009, A&A, 503, 913 Google Scholar
Bladh, et al. 2015, A&A, 575, 105 Google Scholar
Boyer, et al. 2012, ApJ, 748, 40 CrossRefGoogle Scholar
Brinch, & Hogerheijde, 2010, A&A, 523, 25 Google Scholar
Bujarrabal, et al. 2018, A&A, 616, L3 Google Scholar
Castro-Carrizo, et al. 2010, A&A, 523, 59 Google Scholar
Chiu, et al. 2006, ApJ, 645, 605 CrossRefGoogle Scholar
Cummings, et al. 2016, ApJ, 818, 84 CrossRefGoogle Scholar
Danilovich, et al. 2015a, A&A, 574, 23 Google Scholar
Danilovich, et al. 2015b, A&A, 581, 60 Google Scholar
De Beck, et al. 2010, A&A, 523, 18 Google Scholar
Doan, et al. 2017, A&A, 605, 28 Google Scholar
Eriksson, et al. 2014, A&A, 566, 95 Google Scholar
Goldreich, & Scoville, 1976, ApJ, 205, 384 CrossRefGoogle Scholar
González-Delgado, et al. 2003, A&A, 411, 123 Google Scholar
Groenewegen, 2006, A&A, 448, 181 Google Scholar
Groenewegen, et al. 2007, MNRAS, 376, 313 CrossRefGoogle Scholar
Groenewegen, et al. 2009, A&A, 506, 1277 Google Scholar
Groenewegen, et al. 2011, A&A, 526, 162 Google Scholar
Groenewegen, et al. 2016, A&A, 596, 50 Google Scholar
Groenewegen, 2017, A&A, 606, 67 Google Scholar
Groenewegen, & Sloan, 2018, A&A, 609, 114 Google Scholar
Guélin, et al. 2018, A&A, 610, 4 Google ScholarPubMed
Gullieuszik, et al. 2012, A&A, 609, 114 Google Scholar
Gustafsson, et al. 2008, A&A, 486, 951 Google Scholar
Hankins, et al. 2018, ApJ, 852, 27 CrossRefGoogle Scholar
Höfner, & Olofsson, 2018, A&ARv, 26, 1 Google Scholar
Ishihara, et al. 2011, A&A, 534, 79 Google Scholar
Ivezic, et al. 1999, astro-ph: /9910475Google Scholar
Jones, & Boffin, 2017, Nat. Astronomy, 1, id. 0117Google Scholar
Justtanont, et al. 2012, A&A, 537, 144 Google Scholar
Kim, et al. 2017, Nat. Astronomy, 1, id. 0060Google Scholar
Li, et al. 2014, A&A, 568, 111 Google ScholarPubMed
Li, et al. 2016, A&A, 588, 4 Google ScholarPubMed
Lian, et al. 2014, A&A, 564, 84 Google Scholar
Liljegren, et al. 2017, A&A, 606, 6 Google Scholar
Maercker, et al. 2012, Nature, 490, 232 CrossRefGoogle Scholar
Maoz, et al. 2014, ARA&A, 52, 107 CrossRefGoogle Scholar
Mamon, et al. 1988, ApJ, 328, 797 CrossRefGoogle Scholar
Martí-Vidal, et al. 2014, A&A, 563, 136 Google Scholar
Matsuura, et al. 2013, MNRAS, 429, 2527 CrossRefGoogle Scholar
Meixner, et al. 2006, AJ, 132, 2268 CrossRefGoogle Scholar
Mohamed, & Podsiadlowski, 2012, BaltA, 21, 88 Google Scholar
Nanni, et al. 2018, MNRAS, 473, 5492 CrossRefGoogle Scholar
Ramstedt, et al. 2006, A&A, 454, L103 Google Scholar
Ramstedt, et al. 2008, A&A, 487, 645 Google Scholar
Ramstedt, et al. 2009, A&A, 499, 515 Google Scholar
Ramstedt, et al. 2011, A&A, 531, 148 Google Scholar
Ramstedt, et al. 2014, A&A, 570, L14 Google Scholar
Ramstedt, et al. 2017, A&A, 605, 126 Google ScholarPubMed
Ramstedt, et al. 2018, A&A, 616, 61 Google Scholar
Riebel, et al. 2012, ApJ, 753, 71 CrossRefGoogle Scholar
Sahai, 1992, A&A, 253, L33 Google Scholar
Sargent, et al. 2011, ApJ, 728, 93 CrossRefGoogle Scholar
Schöier, & Olofsson, 2001, A&A, 368, 969 Google Scholar
Schöier, et al. 2005, A&A, 432, 369 Google Scholar
Srinivasan, et al. 2006, AAS, 38, 1121 Google Scholar
Teyssier, et al. 2006, A&A, 450, 167 Google Scholar
van Loon, et al. 2005, A&A, 438, 273 Google Scholar
Vlemmings, et al. 2018, A&A, 613, L4 Google Scholar