Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T18:43:10.405Z Has data issue: false hasContentIssue false

The maximum magnetic flux in an active region

Published online by Cambridge University Press:  01 September 2008

George Livadiotis
Affiliation:
Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX 78238, US email: glivadiotis@swri.edu; glivad@phys.uoa.gr Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, National and Capodistrian University of Athens, Panepistimiopolis, GR 15784, Zografos, Athens, Greece email: xmoussas@phys.uoa.gr
Xenophon Moussas
Affiliation:
Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, National and Capodistrian University of Athens, Panepistimiopolis, GR 15784, Zografos, Athens, Greece email: xmoussas@phys.uoa.gr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Photometric-Magnetic Dynamical model handles the evolution of an individual sunspot as an autonomous nonlinear, though integrable, dynamical system. The model considers the simultaneous interplay of two different interacted factors: The photometric and magnetic factors, respectively, characterizing the evolution of the sunspot visible area A on the photosphere, and the simultaneous evolution of the sunspot magnetic field strength B. All the possible sunspots are gathered in a specific region of the phase space (A, B). The separatrix of this phase space region determines the upper limit of the values of sunspot area and magnetic strength. Consequently, an upper limit of the magnetic flux in an active region is also determined, found to be ≈7.23 × 1023 Mx. This value is phenomenologically equal to the magnetic flux concentrated in the totality of the granules of the quite Sun. Hence, the magnetic flux concentrated in an active region cannot exceed the one concentrated in the whole photosphere.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Hathaway, D. H. & Choudhary, D. P. 2005, NASA Technical Reports Server, ID: 20050236988Google Scholar
Fisk, L. A. 2005, ApJ, 626, 563Google Scholar
Foukal, P. V. 2004, in: Solar Astrophysics (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim), pp. 138143CrossRefGoogle Scholar
Livadiotis, G. & Moussas, X. 2007, Physica A, 379, 436Google Scholar
Livadiotis, G. & Moussas, X. 2008, in: Contopoulos, G. & Patsis, P. A. (eds.), Chaos in Astronomy (Springer, Berlin), Ch. 46, p. 455Google Scholar
Livadiotis, G. & Moussas, X. 2009, Adv. Space Res., doi:10.1016/j.asr.2008.09.010, in pressCrossRefGoogle Scholar
Martínez Pillet, V., Moreno-Insertis, F., & Vázquez, M. 1993, Astron. Astrophys., 274, 521Google Scholar
Rabin, D. M., Devore, C. R., Sheeley, N. R., Harvey, K. L., & Hoeksema, J. T. 1991, in: Cox, A. N., Livingston, W. C. & Matthews, M. S. (eds.), Solar Interior and Atmosphere (The University of Arizona Press), p. 781Google Scholar
Solanki, S. K. 2003, Astron. Astrophys. Rev., 11, 153Google Scholar
Solanki, S. K., Inhester, B., & Schüssler, M. 2006, Rep. Prog. Phys., 69, 563Google Scholar
Vial, J.-C. 2005, Adv. Space Res., 36, 1375Google Scholar
Wang, Y.-M. 2004, Solar Phys., 224, 21Google Scholar