Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T11:48:36.882Z Has data issue: false hasContentIssue false

Measured mass to stoichoimetric formula through exhaustive search

Published online by Cambridge University Press:  12 October 2020

François-Régis Orthous-Daunay
Affiliation:
Institut de Planétologie et d’Astrophysique de Grenoble, Univ. Grenoble Alpes, CNRS, CS 40700, 38058 Grenoble Cédex 9, France email: frod@univ-grenoble-alpes.fr
Roland Thissen
Affiliation:
Laboratoire de Chimie Physique, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91405, Orsay, France
Véronique Vuitton
Affiliation:
Institut de Planétologie et d’Astrophysique de Grenoble, Univ. Grenoble Alpes, CNRS, CS 40700, 38058 Grenoble Cédex 9, France email: frod@univ-grenoble-alpes.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Electrospray ionisation has revolutionised mass spectrometry. Coupled to high mass resolution, it provides the stoichiometric formula of a lot of molecules in a mixture. The link between the mass spectrometry data and the chemical description relies on an interpretation of the measured masses. We present here the tools and tricks developed to exploit Orbitrap mass spectra. This piece of work focuses on the numerical method to assign a molecular formula to a measured mass. The problem is restrained to the solving of the Diophantine equation where the constant coefficients are stoichiometric groups. Peculiar case of a set of convenient groups is given with the chemical constraints it brings to the problem.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Danger, G., Orthous-Daunay, F. R., de Marcellus, P., Modica, P., Vuitton, V., Duvernay, F., Flandinet, L., Le Sergeant d’Hendecourt, L., Thissen, R., & Chiavassa, T. 2013, Geochim. Cosmochim. Acta, 118, 184 10.1016/j.gca.2013.05.015CrossRefGoogle Scholar
Einstein, D., Lichtblau, D., Strzebonski, A., & Wagon, S. 2007, E. J. Comb. Num. Th., 7, 63 Google Scholar
Kind, T. & Fiehn, O. 2007, BMC bioinformatics, 8, 105 10.1186/1471-2105-8-105CrossRefGoogle Scholar
Kozhinov, A. N., Zhurov, K. O., & Tsybin, Y. O 2013, Anal. Chem., 85, 6437 10.1021/ac400972yCrossRefGoogle Scholar
Makarov, A. 2000, Anal. Chem., 72, 1156 Google Scholar
Makarov, A., Denisov, E., Kholomeev, A., Balschun, W., Lange, O., Strupat, K., & Horning, S. 2006, Anal. Chem., 78, 2113 10.1021/ac0518811CrossRefGoogle Scholar
Meija, J. 2006, Anal. Bioanal. Chem., 385, 486 CrossRefGoogle Scholar
Pernot, P., Carrasco, N., Thissen, R., & Schmitz-Afonso, I. 2010, Anal. Chem., 82, 1371 10.1021/ac902458qCrossRefGoogle Scholar
Robinson, J. 1972, J. Symbolic Logic, 37, 605 CrossRefGoogle Scholar
Yamashita, M. & Fenn, J. B. 1984, J. Phys. Chem., 88, 4451 10.1021/j150664a002CrossRefGoogle Scholar