Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T12:49:14.906Z Has data issue: false hasContentIssue false

MEASURING THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE

Published online by Cambridge University Press:  01 November 2009

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ten years ago our team completed the Hubble Space Telescope Key Project on the extragalactic distance scale. Cepheids were detected in some 25 galaxies and used to calibrate four secondary distance indicators that reach out into the expansion field beyond the noise of galaxy peculiar velocities. The result was H0 = 72 ± 8 km s−1 Mpc−1 and put an end to galaxy distances uncertain by a factor of two. This work has been awarded the Gruber Prize in Cosmology for 2009.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Benedict, G. et al. 2007, AJ, 133, 1810CrossRefGoogle Scholar
Ciardullo, R. & Jacoby, G. 1992, ApJ, 388, 268CrossRefGoogle Scholar
Chiosi, C., Wood, P., & Capitanio, N. 1993, ApJ (Suppl), 86, 541Google Scholar
Ferrarese, L. et al. 2000a, ApJ, 529, 745CrossRefGoogle Scholar
Ferrarese, L. et al. 2000b, ApJ (Suppl), 128, 431Google Scholar
Freedman, W. et al. 2001, ApJ, 553, 47CrossRefGoogle Scholar
Freedman, W. et al. 1991, ApJ, 372, 455CrossRefGoogle Scholar
Gibson, B. et al. 2000, ApJ, 529, 723CrossRefGoogle Scholar
Herrnstein, R. et al. 1999, Nature, 400, 539CrossRefGoogle Scholar
Hubble, E. 1929, Proc. N.A.S., 15, 168CrossRefGoogle Scholar
Kelson, D. et al. 2000, ApJ 529, 768CrossRefGoogle Scholar
Kennicutt, R. et al. 1998, ApJ, 498, 181CrossRefGoogle Scholar
Komatsu, E. et al. 1998, ApJ (Suppl), 180, 330Google Scholar
Leavitt, H. 1908, Ann. Harvard CO, 60, 87Google Scholar
Leavitt, H. & Pickering, E. 1912, Harvard CO Circ., 173, 1Google Scholar
Macri, L. et al. 2006, ApJ, 652, 1133CrossRefGoogle Scholar
Madore, B. & Freedman, W. 1991, PASP, 103, 933CrossRefGoogle Scholar
Madore, B. & Freedman, W. 2002, SPIE, 4847, 156Google Scholar
Madore, B. & Freedman, W. 2005, ApJ, 630, 1054CrossRefGoogle Scholar
Mould, J. & Sakai, S. 2008, ApJ, 686, 75CrossRefGoogle Scholar
Mould, J. & Sakai, S. 2009a, ApJ, 694, 1331CrossRefGoogle Scholar
Mould, J. & Sakai, S. 2009b, ApJ, 697, 996CrossRefGoogle Scholar
Phelps, R. et al. 1998, ApJ, 500, 763CrossRefGoogle Scholar
Riess, A. et al. 2009, ApJ, 699, 539CrossRefGoogle Scholar
Saha, A. et al. 1999, ApJ, 522, 802CrossRefGoogle Scholar
Sakai, S. et al. 1997, ApJ, 478, 49CrossRefGoogle Scholar
Sakai, S. et al. 2000, ApJ, 529, 698CrossRefGoogle Scholar
Sandage, A. et al. 2004, A&A, 424, 43Google Scholar
Scowcroft, V. et al. 2009, MNRAS, 396, 1287CrossRefGoogle Scholar
Secker, J. & Harris, W. 1993, AJ, 105, 1358CrossRefGoogle Scholar
Stetson, P. 1994, PASP, 106, 250CrossRefGoogle Scholar
Tonry, J. et al. 2001, ApJ, 546, 681CrossRefGoogle Scholar
Turner, et al. 1998, ApJ, 505, 207CrossRefGoogle Scholar
Zaritsky, D., Kennicutt, R., & Huchra, J. 1994, ApJ, 420, 87CrossRefGoogle Scholar