Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:00:40.920Z Has data issue: false hasContentIssue false

The merger debris of dwarf galaxies in the local stellar halo

Published online by Cambridge University Press:  30 October 2019

Cuihua Du
Affiliation:
College of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, China email: ducuihua@ucas.ac.cn
Hefan Li
Affiliation:
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Heidi Jo Newberg
Affiliation:
Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Based on the second Gaia data release and spectroscopy from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data, we identified 23,582 halo stars kinematically. The halo streams in the solar neighborhood could be detected in the space of energy and angular momentum. We reshuffle the velocities of these stars to determine the significance of the substructure. Finally, we find 14 statistically significant substructures and several substructures are not reported by previous works. These structures may be the debris of dwarf galaxies accretion event and their dynamical and chemical information can help to understand the history of the Galaxy.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bland-Hawthorn, J., & Gerhard, O. 2016, ARAA, 54, 529 CrossRefGoogle Scholar
Bond, N. A., Ivezić, Ž, Sesar, B., et al. 2010, ApJ, 716, 1 CrossRefGoogle Scholar
Cooper, A. P., Parry, O. H., Lowing, B., et al. 2015, MNRAS, 454, 3185 CrossRefGoogle Scholar
Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, RAA, 12, 1197 Google Scholar
Eggen, O. J. 1996, AJ, 112, 1595 CrossRefGoogle Scholar
Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, ApJ, 136, 748 CrossRefGoogle Scholar
Font, A. S., Mccarthy, I. G., Crain, R. A., et al. 2011, MNRAS, 416, 2802 CrossRefGoogle Scholar
Collaboration, Gaia, (Brown, A. G. A., et al. ) 2018, arXiv:1804.09365Google Scholar
Helmi, A., & White, S. D. M. 1999a, MNRAS, 307, 495 CrossRefGoogle Scholar
Helmi, A., White, S. D. M., de Zeeuw, P. T., et al. 1999b, Nature, 402, 53 CrossRefGoogle Scholar
Helmi, A., Veljanoski, J., Breddels, M. A., et al. 2017, A&A, 598, A58 Google Scholar
Kepley, A. A., Morrison, H. L., Helmi, A., et al. 2007, AJ, 134, 1579 CrossRefGoogle Scholar
Klement, R., Rix, H. W, Flynn, C., et al. 2009, ApJ, 698, 865 CrossRefGoogle Scholar
Klypin, A. A., Trujillo-Gomez, S., & Primack, J. 2011, ApJ, 740, 102 CrossRefGoogle Scholar
Li, G.-W., Yanny, B., Zhang, H.-T., et al. 2017, RAA, 17, 62 Google Scholar
Liang, X.-L., Zhao, J.-K., Oswalt, T. D., et al., 2017, ApJ, 844, 152 CrossRefGoogle Scholar
McMillan, P. J. 2017, MNRAS, 465, 76 CrossRefGoogle Scholar
Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2012, arXiv:1201.0490Google Scholar
Searle, L., & Zinn, R. 1978, ApJ, 225, 357 CrossRefGoogle Scholar
Smith, M. C., Evans, N. W., Belokurov, V., et al. 2009, MNRAS, 399, 1223 CrossRefGoogle Scholar
Springel, V., Wang, J., Vogelsberger, M., et al. 2008, MNRAS, 391, 1685 CrossRefGoogle Scholar
Zolotov, A., Willman, B., Brooks, A., et al. 2010, ApJ, 721, 738 CrossRefGoogle Scholar
Zhao, G., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, RAA, 12, 723 Google Scholar