Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-16T03:45:23.718Z Has data issue: false hasContentIssue false

Migration & Extra-solar Terrestrial Planets: Watering the Planets

Published online by Cambridge University Press:  29 April 2014

Jade C. Carter-Bond
Affiliation:
School of Physics, University of New South Wales, Kensington, NSW 2052Australia email: j.bond@unsw.edu.au
David P. O'Brien
Affiliation:
Planetary Science Institute, 1700 E. Fort Lowell, Tucson, AZ 85719USA email: obrien@psi.edu
Sean N. Raymond
Affiliation:
Université de Bordeaux, Observatoire Aquitain des Sciences de l'Univers, 2 rue de l'Observatoire, BP 89, 33271, Floirac Cedex, France CNRS, UMR 5804, Laboratoire d'Astrophysique de Bordeaux, 2 rue de l'Observatoire, BP 89, 33271, Floirac Cedex, France email: rayray.sean@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Armitage, P. J. 2007, ApJ, 665, 1381CrossRefGoogle Scholar
Asimow, P. D. & Langmuir, C. H. 2003, Nature, 421, 815Google Scholar
Asplund, M., Grevesse, N., & Sauval, A. J. 2005, ASP Conference Series, 336, 25Google Scholar
Beirão, P., Santos, N. C., Israelian, G., & Mayor, M. 2004, A&A, 438, 251Google Scholar
Bond, J. C., Lauretta, D. S., & O'Brien, D. P. 2010, Icarus, 205, 321Google Scholar
Bond, J. C., O'Brien, D. P., & Lauretta, D. S. 2010, ApJ, 715, 1050Google Scholar
Carter-Bond, J. C., O'Brien, D. P., Delgado Mena, E., Israelian, G., Santos, N. C., & González Hernández, J. I. 2012a, ApJ, 747, L2CrossRefGoogle Scholar
Carter-Bond, J. C., O'Brien, D. P., & Raymond, S. N. 2012b, ApJ 760 article id. 44Google Scholar
Davis, A. M. 2006, Meteorites in the Early Solar System II, 295.Google Scholar
Ecuvillon, A., Israelian, G., Santos, N. C., Mayor, M., Villar, V., & Bihain, G. 2004, A&A, 426, 619Google Scholar
Ecuvillon, A., Israelian, G., Santos, N. C., Shchukina, N. G., Mayor, M., & Rebolo, R. 2006, A&A, 445, 633Google Scholar
Elser, S., Meyer, M. R., & Moore, B. 2012, Icarus, 221, 859Google Scholar
Fogg, M. J. & Nelson, R. P. 2005, A&A, 441, 791Google Scholar
Fogg, M. J. & Nelson, R. P. 2007, A&A, 472, 1003Google Scholar
Gaidos, E. 2000, Icarus, 145, 637Google Scholar
Gaidos, E., Haghighipour, N., Agol, E., Latham, D., Raymond, S., & Rayner, J. 2007, Science, 318, 210Google Scholar
Gänsicke, B. T., Koester, D., Farihi, J., Girven, J., Parsons, S. G., & Breedt, E. 2012, MNRAS, 424, 333Google Scholar
Gilli, G., Israelian, G., Ecuvillon, A., Santos, N. C., & Mayor, M. 2006, AJ, 449, 723Google Scholar
Hersant, F., Gautier, D., & Huré, J. M. 2001, ApJ, 554, 391CrossRefGoogle Scholar
Jura, M. 2003, ApJ, 584, L91Google Scholar
Jura, M. 2006, ApJ, 653, 613Google Scholar
Jura, M. 2008, ApJ, 135, 1785Google Scholar
Jura, M. & Xu, S. 2012, ApJ, 143, 6Google Scholar
Jura, M., Xu, S., Klein, B., Koester, D., & Zuckerman, B. 2012, ApJ, 750, 69Google Scholar
Kargel, J. S. & Lewis, J. S. 1993, Icarus, 105, 1Google Scholar
Korenaga, J. 2010, ApJ, 725, L43Google Scholar
Kuchner, M. J. & Seager, S. 2005, arXiv:astro-ph/0504214Google Scholar
Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Nature, 380, 606Google Scholar
Mandell, A. M., Raymond, S. N., & Sigurdsson, S. 2009, ApJ, 660, 823Google Scholar
Papaloizou, J. & Lin, D. N. C. 1984, ApJ, 285, 818Google Scholar
Raymond, S. N., Mandell, A. M., & Sigurdsson, S. 2006, Science, 313, 1413Google Scholar
Raymond, S. N., O'Brien, D. P., Morbidelli, A., & Kaib, N. A. 2009, Icarus, 203, 644Google Scholar
van Heck, H. J. & Tacklet, P. J. 2011, EPSL, 310, 252Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O'Brien, D. P., & Mandell, A. M. 2011, Nature, 475, 206CrossRefGoogle Scholar
Walsh, K. J. & Morbidelli, A. 2011, A&A, 526, 126Google Scholar
Zuckerman, B., Koester, D., Dufour, P., Melis, C., Klein, B., & Jura, M. 2011, ApJ 739 article id. 101Google Scholar