Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T02:39:00.379Z Has data issue: false hasContentIssue false

Modeling and analysis of medium-resolution integrated-light spectra of globular clusters in dwarf galaxies

Published online by Cambridge University Press:  11 March 2020

Margarita E. Sharina
Affiliation:
Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz, 369167, Russia email: sme@sao.ru
Vladislav V. Shimansky
Affiliation:
Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia email: Slava.Shimansky@kpfu.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The study of ages, helium mass fraction (Y) and chemical composition of globular clusters in dwarf galaxies is important for understanding the physical conditions at the main evolutionary stages of the host galaxies and for constraining the build-up histories of large galaxies. We present the analysis of integrated-light spectra of 8 extragalactic and 20 Galactic globular clusters (GCs) using our population synthesis method. We calculate synthetic spectra of GCs according to the defined stellar mass functions using model atmospheres and stellar parameters ([Fe/H], Teff, and logg) set by theoretical isochrones. The main advantage of our method is the ability to determine not only chemical composition but also the age and mean Y in a cluster by modelling and analysis of Balmer absorption lines. The knowledge of Y and anomalies of light elements in star clusters is one of the key points for understanding the phenomenon of multiple stellar populations.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Betelli, G., Girardi, L., Marigo, P., & Nasi, E. 2008, A&A, 484, 815Google Scholar
Castelli, F. & Kurucz, R. L 2003, in: Piskunov, N.et al. (eds.), Modeling of Stellar Atmospheres, Proc. IAU Symposium No. 210 (Dordrecht: Kluwer), p. A20CrossRefGoogle Scholar
Chabrier, G. 2005, in: Corbelli, E., Palle, F., (eds.), The Initial Mass Function 50 Years Later, Astrophysics and Space Science Library, 327 (Berlin: Springer-Verlag), p. 41Google Scholar
Conroy, C., Villaume, A., van Dokkum, P. G., & Lind, K. 2018, ApJ, 854, 139CrossRefGoogle Scholar
Fan, Z., Huang, Y.-F., Li, J.-Z.et al. 2011, Research in Astronomy and Astrophysics, 11, 1298CrossRefGoogle Scholar
Harris, W. E. 1996, AJ, 112, 1487 (2010 edition)CrossRefGoogle Scholar
Huchra, J. P., Brodie, J. P., Kent, S. M. 1991, ApJ, 370, 495CrossRefGoogle Scholar
Kurucz, R. L. 1994, CD-Room No. 19-22. Smithsonian Astrophysical Observatory (Cambridge)Google Scholar
Larsen, S. S., Brodie, J. P., Strader, J. 2017, A&A, 601, 96Google Scholar
Ma, J.et al. 2009, Research in Astronomy and Astrophysics, 9, 641CrossRefGoogle Scholar
Ma, J.et al. 2012, Research in Astronomy and Astrophysics, 12, 115CrossRefGoogle Scholar
Mackey, A. D., Huxor, A., Ferguson, A. M. N., et al. 2007, ApJ, 655, L85CrossRefGoogle Scholar
Meylan, G., Sarajedini, A., Jablonka, P., et al. 2001, AJ, 122, 830CrossRefGoogle Scholar
Pritzl, B. J., Venn, K. A., Irwin, M. 2005, AJ, 130, 2140CrossRefGoogle Scholar
Roediger, J. C., Courteau, S., Graves, G., Schiavon, R. P. 2014, ApJS, 210, 10CrossRefGoogle Scholar
Schiavon, R. P., Rose, J. A., Courteau, S., MacArthur, L. A. 2005, ApJS, 160, 163CrossRefGoogle Scholar
Sharina, M. E., Shimansky, V. V. 2018, Astrophysical Bulletin, 73, 318CrossRefGoogle Scholar
Sharina, M. E., Shimansky, V. V., Kniazev, A. Y. 2017, MNRAS, 471, 1955CrossRefGoogle Scholar
Sharina, M. E., Davoust, E. 2009, A&A, 497, 65Google Scholar
Sharina, M. E., Chandar, R., Puzia, T. H., Goudfrooij, P., Davoust, E. 2010, MNRAS, 405, 839Google Scholar
Veljanoski, J., Ferguson, A. M. N., Mackey, A. D., et al. 2013, ApJ, 768, L33CrossRefGoogle Scholar