Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T22:59:50.936Z Has data issue: false hasContentIssue false

Modeling line-of-sight magnetograms of emerging active regions

Published online by Cambridge University Press:  23 December 2024

M. Poisson*
Affiliation:
Instituto de Astronomía y Física del Espacio (UBA-CONICET), Buenos Aires, Argentina.
M López–Fuentes
Affiliation:
Instituto de Astronomía y Física del Espacio (UBA-CONICET), Buenos Aires, Argentina.
C. H. Mandrini
Affiliation:
Instituto de Astronomía y Física del Espacio (UBA-CONICET), Buenos Aires, Argentina.
F. Grings
Affiliation:
Instituto de Astronomía y Física del Espacio (UBA-CONICET), Buenos Aires, Argentina.
P. Démoulin
Affiliation:
Observatoire de Paris (LESIA), Meudon, France.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Active regions (ARs) appear in the solar atmosphere as a consequence of the emergence of magnetic flux ropes (FRs). Due to the presence of twist, the photospheric line-of-sight (LOS) magnetograms of emerging ARs show an elongation of the polarities known as magnetic tongues. These tongues can affect the estimation of tilt angles during their emergence phase. In this work, we propose a Bayesian method to model LOS magnetograms of emerging ARs using a half-torus twisted FR model. We apply this model to 21 emerging ARs observed during Solar Cycle 23. We find that the Bayesian method corrects the tilt when compared to other methods, removing the spurious rotation of the polarities produced by the retraction of the tongues during the emergence. We find a variation in Joy’s law with the stage of the AR emergence and the method used for its estimation.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

D’Silva, S. and Choudhuri, A. R., 1993 A&A, 272, 621.Google Scholar
Fan, Y., 2009, ApJ, 697, 15291542.CrossRefGoogle Scholar
Howe, R., 2009, Liv. Rev. in Solar Phys., 6, 1.Google Scholar
Jha, B. K., Karak, B. B., Mandal, S. and Banerjee, D., 2020 ApJL, 889, L19.CrossRefGoogle Scholar
Liu, Y., Zhao, X., Hoeksema, J. T., 2004 Solar Phys., 219, 39.CrossRefGoogle Scholar
López–Fuentes, M. C., Démoulin, P., Mandrini, C. H. and van Driel–Gesztelyi, L., 2000 ApJ, 544, 540.CrossRefGoogle Scholar
Nelson, N. J. and Brown, B. P. and Brun, A , S., Miesch, M , S., Toomre, J., 2013, ApJ, 762, 2.CrossRefGoogle Scholar
Poisson, M., López–Fuentes, M. C., Mandrini, C. H., Démoulin, P. and Mac Cormack, C., 2020 A&A, 633, A151.CrossRefGoogle Scholar
Poisson, M. and Grings, F., Mandrini, C , H., López–Fuentes, M., Démoulin, P., 2022 A&A, 665, A101.CrossRefGoogle Scholar
Salvatier, J. and Wiecki, TV and Fonnesbeck, C., 2016 PeerJ Comp. Sci., 2, e55.Google Scholar
Scherrer, P. H., Bogart, R. S., Bush, R. I., Hoeksema, J. T., Kosovichev, A. G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T. D., Title, A., Wolfson, C. J., Zayer, I. and Engineering Team, MDI, 1995 Solar Phys., 162, 129.CrossRefGoogle Scholar
Stenflo, J. O. and Kosovichev, A. G., 2012 ApJ, 745, 129.CrossRefGoogle Scholar
van Driel–Gesztelyi, L. and Green, L. M., 2015, Liv. Rev. in Solar Phys., 12, 1.CrossRefGoogle Scholar
Wang, Y. M., 2017, Space Sci. Revs., 210, 14.CrossRefGoogle Scholar
Weber, M.A., Schunker, H., Jouve, L. et al., 2023 Space Sci. Revs., 219, 63CrossRefGoogle Scholar