Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T04:16:52.205Z Has data issue: false hasContentIssue false

Modeling resonant trojan motions in planetary systems

Published online by Cambridge University Press:  05 January 2015

Christos Efthymiopoulos
Affiliation:
Research Center for Astronomy and Applied Mathematics, Academy of Athens, Greece
Rocío I. Páez
Affiliation:
Dip. di Matematica, Universitá di Roma “Tor Vergata”, Italy emails: cefthim@academyofathens.gr, paez@mat.uniroma2.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the dynamics of a small trojan companion of a hypothetical giant exoplanet under the secular perturbations of additional planets. By a suitable choice of action-angle variables, the problem is amenable to the study of the slow modulation, induced by secular perturbations, to the dynamics of an otherwise called ‘basic’ Hamiltonian model of two degrees of freedom (planar case). We present this Hamiltonian decomposition, which implies that the slow chaotic diffusion at resonances is best described by the paradigm of modulational diffusion.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Beaugé, C. & Roig, F. 2001, Icarus 153, 391415.CrossRefGoogle Scholar
Chirikov, B. V., Lieberman, M. A., Shepelyansky, D. L., & Vivaldi, F. M. 1985, Physica D 14, 289304.Google Scholar
Dobrovolskis, A. 2013, Icarus 226, 16361641.Google Scholar
Érdi, B., Nagy, I., Sándor, Zs. & Süli, A., Fröhlich, G. 2007, MNRAS 381, 3340.Google Scholar
Érdi, B., Forgács-Dajka, E., Nagy, I., & Rajnai, R. 2009, Cel. Mech. Dyn. Astron. 104, 145158CrossRefGoogle Scholar
Giuppone, C. A., Benítez-Llambay, P., & Beaugé, C. 2012, MNRAS 421, 356368.Google Scholar
Haghighipour, N., Capen, S., & Hinse, T. 2013, Cel. Mech. Dyn. Astron. 117, 7589.Google Scholar
Lyra, W., Johansen, A., Klahr, H., & Piskunov, N. 2009, A&A 493, 11251139.Google Scholar
Marzari, F., Tricarino, P. & Scholl, H. 2003, MNRAS 345, 10911100.Google Scholar
Milani, A. 1993, Cel. Mech. Dyn. Astron. 57, 5994.Google Scholar
Morais, M. H. M. 2001, A&A 369, 677689.Google Scholar
Páez, R.I. & Efthymiopoulos, C. 2014, Cel. Mech. Dyn. Astron. (in press), arXiV 1410.1407.Google Scholar
Pierens, A. & Raymond, S. N. 2014, MNRAS 442, 22962303.CrossRefGoogle Scholar
Robutel, P. & Gabern, F. 2006, MNRAS 372, 14631482.Google Scholar
Robutel, P. & Bodossian, J. 2009, MNRAS 399, 6987.CrossRefGoogle Scholar
Schwarz, R., Dvorak, R., Süli, A. & Érdi, B. 2007 A&A 474, 102311029.Google Scholar