Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T16:05:10.256Z Has data issue: false hasContentIssue false

The morphology-density relation: a constant of nature

Published online by Cambridge University Press:  01 July 2007

Arjen van der Wel*
Affiliation:
Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA email: wel@pha.jhu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Sloan Digital Sky Survey (SDSS) and photometric/spectroscopic surveys of two z ~ 0.8 massive clusters of galaxies and the Chandra Deep Field-South (CDFS) are used to construct volume-limited, stellar mass-selected samples of galaxies at redshifts 0 < z < 1 in a large range of environments. Morphologies are determined visually and with an automated method, using the Sérsic parameter n and a measure of the residual from the Sérsic model fits, called “bumpiness”, to distinguish different morphologies. The agreement between the visual and automated methods is excellent. The fraction of E+S0 galaxies with masses larger than ~ 0.5 M* is 40 − 50% in the field, and > 80% in the clusters, without significant changes with redshift. Therefore, we find that the morphology-density relation (MDR) for galaxies more massive than ~ 0.5 M* has remained constant since at least z ~ 0.8. This implies that galaxy evolution (in terms of mass, star formation, color, morphology, etc.) must happen such that the MDR does not change.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Baldry, I. K. et al. 2006, MNRAS, 373, 469CrossRefGoogle Scholar
Bell, E. F. et al. 2004, ApJ, 608, 752CrossRefGoogle Scholar
Blakeslee, J. P. et al. 2006, ApJ, 644, 30CrossRefGoogle Scholar
Dressler, A. 1980, ApJ 236, 351CrossRefGoogle Scholar
Dressler, A. et al. 1997, ApJ, 490, 577CrossRefGoogle Scholar
Giavalisco, M. et al. 2004, ApJ, 600, L93CrossRefGoogle Scholar
Holden, B. P. et al. 2007, ApJ, in press, arXiv:0707.2782Google Scholar
Kassin, S. A. et al. 2007, ApJ, 660, 35CrossRefGoogle Scholar
Kauffmann, G. et al. 2003, MNRAS, 341, 33CrossRefGoogle Scholar
Le Floc'h, E. et al. 2005, ApJ, 632, 169CrossRefGoogle Scholar
Madau, P. et al. 1996, MNRAS, 283, 1388CrossRefGoogle Scholar
Postman, M. et al. 2005, ApJ, 623, 721CrossRefGoogle Scholar
Smith, G. P., Treu, T., Ellis, R. S., Moran, S. M., & Dressler, A. 2005, ApJ, 620, 78CrossRefGoogle Scholar
van der Wel, A. et al. 2007, ApJ, in press, arXiv:0707.2787Google Scholar
van der Wel, A. et al. 2006, ApJ, 652, 97CrossRefGoogle Scholar