Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T08:50:38.518Z Has data issue: false hasContentIssue false

Multiparametric scaling relations for dwarf irregular galaxies in different environments

Published online by Cambridge University Press:  26 February 2013

M. E. Sharina
Affiliation:
Special Astrophysical Observatory, Russian Academy of Sciences, N. Arkhyz, KChR, 369167, Russia email: sme@sao.ru
V. E. Karachentseva
Affiliation:
Main Astronomical Observatory, National Academy of Sciences of Ukraine, Ukraine email: valkarach@gmail.com
D. I. Makarov
Affiliation:
Special Astrophysical Observatory, Russian Academy of Sciences, N. Arkhyz, KChR, 369167, Russia email: sme@sao.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the correlations of rotation velocity and absolute magnitude with surface brightness for low surface brightness dwarf irregular galaxies (dIrrs). We find that isolated objects contribute most to the scatter in the Tully–Fisher relation (TFR). Excluding these extreme cases, we develop a three-parameter (luminosity, Hi line width at 20% of peak flux level, i.e., W20, effective surface brightness) TFR for 60 dIrrs (with revised Hubble type T > 8) in the Local Volume (LV) with Cepheid and tip-of-the-red-giant-branch distance measurements. The relation is applied to galaxies of the same morphological type with radial velocities vLG ≤ 3500 km s−1 in the Local Supercluster. We obtained surface photometry and determined structural parameters using sdss images. The rotational velocities and derived photometric parameters for most galaxies in small groups agree well with those corresponding to the three-parameter TFR. However, isolated galaxies appear to have systematically lower surface brightnesses and longer scale lengths for the same luminosity than galaxies in small groups. This may indicate on average twice larger Hi-to-optical disk size ratios for our sample of isolated dIrrs, because their Hi surface densities calculated using the optical diameters look normal.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Aaronson, M. & Mould, J. 1983, ApJ, 265, 1Google Scholar
Begum, A., Chengalur, J. N., Karachentsev, I. D., & Sharina, M. E. 2008, MNRAS, 386, 138Google Scholar
Bell, E. F. & de Jong, R. S. 2001, ApJ, 550, 212CrossRefGoogle Scholar
Efstathiou, G. 2000, MNRAS, 317, 697CrossRefGoogle Scholar
Eisenstein, D. J. & Loeb, A. 1996, ApJ, 459, 432Google Scholar
Geha, M., Blanton, M. R., Masjedi, M., & West, A. A. 2006, ApJ, 653, 240Google Scholar
James, P. A., Shane, N. S., Knapen, J. H., Etherton, J., & Percival, S. M., 2005, A&A, 429, 851Google Scholar
Kannappan, S. J., Fabricant, D. G., & Franx, M. 2002, AJ, 123, 2358Google Scholar
Makarov, D. I. & Karachentsev, I. D. 2011, MNRAS, 412, 2498Google Scholar
Karachentsev, I. D., Karachentseva, V. E., Huchtmeier, W. K., & Makarov, D. I. 2004, AJ, 127, 2031 (CNG04)Google Scholar
Karachentseva, V. E., Karachentsev, I. D., & Sharina, M. E. 2010, Astrophys. 53 462 (arXiv: 1104.2506; KKS10)Google Scholar
McCall, M. L., Vaduvescu, O., Pozo Nunez, F., et al. 2012, A&A, 540, 49Google Scholar
McGaugh, S. S., Schombert, J. M., de Blok, W. J. G., & Zagursky, M. J. 2010, ApJ, 708, L14CrossRefGoogle Scholar
McGaugh, S. S. 2005, ApJ, 632, 859CrossRefGoogle Scholar
Sakai, S., Mould, J. R., Hughes, S. M. G., et al. 2010, ApJ, 529, 698Google Scholar
Sandage, A. & Tammann, G. 1984, Nature, 307, 326Google Scholar
Sharina, M. E., Karachentsev, I. D., Dolphin, A. E., et al. 2008, MNRAS, 384, 1544CrossRefGoogle Scholar
Sorce, J. G., Courtois, H. M., & Tully, R. B. 2012, AJ, 144, 133Google Scholar
Tully, R. B. & Fisher, J. R. 1977, A&A, 54, 661Google Scholar