Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T15:58:46.930Z Has data issue: false hasContentIssue false

Multiple Stellar Populations in Globular Clusters with JWST

Published online by Cambridge University Press:  13 February 2024

A. P. Milone*
Affiliation:
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita’ di Padova, Vicolo dell’Osservatorio 3, Padova, IT-35122. Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, Padova, IT-35122
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I present the first evidence of multiple populations in the globular cluster (GCs) 47 Tucanae based on images collected with the near-infrared camera (NIRCam) on board the James Webb Space Telescope (JWST). While NIRCam photometry is poorly sensitive to multiple populations among stars brighter than the main-sequence (MS) knee, the M-dwarfs more-massive than ∼0.1 define a wide color range due to multiple populations. The star-to-star color differences are mostly due to the different amounts of water vapor (hence oxygen) that affect the spectra of M-dwarfs. The chromosome map unveils an extended first population (1P) composed of M-dwarfs with different metallicities and three main groups of second-population (2P) stars that are depleted in oxygen with respect to the 1P. I present the discovery of an MS of very-low-mass stars and tentatively associated it with a sequence composed of O-rich stars alone.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bastian, N. & Lardo, C. 2018, ARA&A, 56, 83 Google Scholar
D’Antona, F., Vesperini, E., D’Ercole, A. et al. 2016, MNRAS, 458, 2122 CrossRefGoogle Scholar
Decressin, T. Meynet, G., Charbonnel, C. et al. 2007, A&A, 64, 1029CrossRefGoogle Scholar
Denissenkov, P. A. & Hartwick, F. D. A., 2014, MNRAS, 437, 21 CrossRefGoogle Scholar
Dondoglio, E., Milone, A. P., Lagioia, E. P. et al. 2021, ApJ, 2021, 906, 76 CrossRefGoogle Scholar
Dondoglio, E., Milone, A. P., Renzini, A. et al. 2022, ApJ, 927, 207 CrossRefGoogle Scholar
Dotter, A., Ferguson, J. W., Conroy, C. et al. 2015, MNRAS, 446, 1641 CrossRefGoogle Scholar
Gieles, M., Charbonnel, C. Krause, M. et al. 2018, MNRAS, 478, 2461CrossRefGoogle Scholar
Gratton, R., Carretta, E., & Bragaglia, A. 2012, ARA&A, 20, 50 CrossRefGoogle Scholar
Lagioia, E. P., Milone, A. P., Marino, A. F. et al. 2021, ApJ, 910, 6 CrossRefGoogle Scholar
Legnardi, M. V., Milone, A. P., Armillotta, L. et al. 2022, MNRAS, 513, 735 CrossRefGoogle Scholar
Marino, A. F., Milone, A., P., Sills, A. et al. 2019, ApJ, 887, 91CrossRefGoogle Scholar
Milone, A. P., Marino, A. F., Cassisi, S. et al. 2012, ApJL, 754, 34 Google Scholar
Milone, A. P. & Marino, A. F., Piotto, G. et al. 2015, ApJ, 808, 51 CrossRefGoogle Scholar
Milone, A. P. & Piotto, G., Renzini, A. et al. 2017, MNRAS, 464, 3636CrossRefGoogle Scholar
Milone, A. P., Marino, A. F., Bedin, L. R. et al. 2019, MNRAS, 484, 4046 CrossRefGoogle Scholar
Milone, A. P. & Marino, A. F. 2022, Universe, 8, 359 CrossRefGoogle Scholar
Milone, A. P., Marino, A. F. Dotter, A. et al. 2023, arXiv:230110889Google Scholar
Renzini, A., Marino, A. F., Milone, A. P., et al. MNRAS, 2022, 513, 2111 CrossRefGoogle Scholar
Salaris, M., Cassisi, S., Mucciarelli, A. & Nardiello, D. 2019, A&A, 629, 40 CrossRefGoogle Scholar
Ziliotto, T. et al. 2023, submittedGoogle Scholar