Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T22:49:54.302Z Has data issue: false hasContentIssue false

Near-IR Diffuse Interstellar Bands in SDSS-III APOGEE Spectra

Published online by Cambridge University Press:  21 February 2014

G. Zasowski
Affiliation:
NSF Postdoctoral Fellow, email: gail.zasowski@gmail.com Department of Astronomy, The Ohio State University, 140 West 18th Ave, Columbus, OH, 43210, USA Department of Physics & Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
B. Ménard
Affiliation:
Department of Physics & Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA Kavli IPMU (WPI), University of Tokyo, Kashiwa 277-8583, Japan Alfred P. Sloan Fellow
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using high resolution H-band spectra from first-year observations of the SDSS-III APOGEE survey, we have searched for the presence of Diffuse Interstellar Bands (DIBs) towards several thousand stars and obtained ~7 000 robust detections spanning a broad range of Galactic environments. This represents the largest homogeneous sample of DIB systems in terms of both size and sky coverage, which can be used for various statistical studies. For example, we find the strength of the most prominent near-IR DIB (at 1.5723 μm) to be strongly correlated with line-of-sight dust extinction, and its apparent velocity appears to trace that of the Galactic CO emission. The ability to work at near-IR wavelengths allows us to probe lines of sight penetrating through the dusty disk of the Galaxy, spanning a range of about 8 magnitudes of extinction. This preliminary investigation illustrates how a large sample of DIBs can serve as a useful tool to probe the structure of the Galaxy and the chemistry of the interstellar medium.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Arce, H. G. & Goodman, A. A. 1999, ApJ (Letters), 512, L135Google Scholar
Chen, B., Figueras, F., & Torra, J., et al. 1999, A&A, 352, 459Google Scholar
Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792Google Scholar
Drosback, M. M., Snow, T. P., Thorburn, J. A., et al. 2005, IAU Symposium, 235, 256PGoogle Scholar
Eisenstein, D. J., Weinberg, D. H., Agol, E., et al. 2011, AJ, 142, 72Google Scholar
Geballe, T. R., Najarro, F., Figer, , et al. 2011, Nature, 479, 200Google Scholar
Heger, M. L. 1922, Lick Observatory Bulletin, 10, 141Google Scholar
Hobbs, L. M., York, D. G., Snow, T. P., et al. 2008, ApJ, 680, 1256CrossRefGoogle Scholar
Hobbs, L. M., York, D. G., Thorburn, J. A., et al. 2009, ApJ, 705, 32Google Scholar
Joblin, C., D'Hendecourt, L., Leger, A., & Maillard, J. P. 1990, Nature, 346, 729Google Scholar
Majewski, S. R., Zasowski, G., & Nidever, D. L. 2011, ApJ, 739, 25CrossRefGoogle Scholar
Majewski, S. R. 2012, American Astronomical Society Meeting Abstracts #219, 219, #205.06Google Scholar
McCall, B. J., Rachford, B. L., Snow, T. P., et al. 2002, NASA Laboratory Astrophysics Workshop, 138Google Scholar
Merrill, P. W. 1936, ApJ, 83, 126Google Scholar
Raimond, S., Lallement, R., Vergely, J. L., Babusiaux, C., & Eyer, L. 2012, A&A, 544, A136Google Scholar
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525Google Scholar
van Loon, J. T., Bailey, M., Tatton, B. L., et al. 2013, A&A, 550, A108Google Scholar