Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T06:55:50.822Z Has data issue: false hasContentIssue false

Near-surface shear layer of solar rotation: origin and significance

Published online by Cambridge University Press:  23 December 2024

Leonid L. Kitchatinov*
Affiliation:
Institute of Solar-Terrestrial Physics, Lermontov Str. 126A, 664033, Irkutsk, Russia Pulkovo Astronomical Observatory, Pulkovskoe Sh. 65, 196140, St–Petersburg, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Helioseismology has discovered a thin layer beneath the solar surface where the rotation rate increases rapidly with depth. The normalized rotational shear in the upper 10 Mm of the layer is constant with latitude. Differential rotation theory explains such a rotational state by a radial-type anisotropy of the near-surface convection and a short correlation time of convective turbulence compared to the rotation period. The shear layer is the main driver of the global meridional circulation.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Barekat, A., Schou, J., & Gizon, L. 2014, A&A, 570, L12.Google Scholar
Brandenburg, A. 2005, ApJ, 625, 539.CrossRefGoogle Scholar
Gizon, L., Cameron, R. H., Pourabdian, M. et al. 2020, Science, 368, 1469.CrossRefGoogle Scholar
Gunderson, L. M. & Bhattacharjee, A. 2019, ApJ, 870, 47.CrossRefGoogle Scholar
Hazra, G., Nandy, D., Kitchatinov, L., & Choudhuri, A. R. 2023, Space Sci. Review, 219, 39.CrossRefGoogle Scholar
Hotta, H., Rempel, M., & Yokoyama, T. 2015, ApJ, 798, 51.CrossRefGoogle Scholar
Jha, B. K. & Choudhuri, A. R. 2021, MNRAS, 506, 2189.CrossRefGoogle Scholar
Kitchatinov, L. L. 2005, Physics Uspekhi, 48, 449.CrossRefGoogle Scholar
Kitchatinov, L. L. 2013, In Kosovichev, A. G. de Gouveia Dal Pino, E., & Yan, Y., editors. Solar and Astrophysical Dynamos and Magnetic Activity, IAU Symposium Vol.294, 399410.Google Scholar
Kitchatinov, L. L. 2023, Astronomy Letters, 49(11), 754.CrossRefGoogle Scholar
Kitchatinov, L. L. & Olemskoy, S. V. 2011, MNRAS, 411, 1059.CrossRefGoogle Scholar
Kitiashvili, I. N., Kosovichev, A. G., Wray, A. A. et al. 2023, MNRAS, 518, 504.CrossRefGoogle Scholar
Komm, R. 2022, Frontiers in Astronomy and Space Sciences, 9, 428.CrossRefGoogle Scholar
Lebedinsky, A. I. 1941, Astronomical Journal (USSR), 18, 10.Google Scholar
Pipin, V. V. & Kosovichev, A. G. 2011, ApJ, 727, L45.CrossRefGoogle Scholar
Rajaguru, S. P. & Antia, H. M. 2015, ApJ, 813, 114.CrossRefGoogle Scholar
Rüdiger, G. 1989, Differential rotation and stellar convection. Sun and solar-type stars. Akademie–Verlag, Berlin.CrossRefGoogle Scholar
Rüdiger, G., Kitchatinov, L. L., & Hollerbach, R. 2013, Magnetic processes in astrophysics: theory, simulations, experiments. Wiley-VCH, Weinheim.CrossRefGoogle Scholar
Schou, J., Antia, H. M., Basu, S. et al. 1998, ApJ, 505, 390.CrossRefGoogle Scholar
Thompson, M. J., Toomre, J., Anderson, E. R. et al. 1996, Science, 272, 1300.CrossRefGoogle Scholar