Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T17:50:44.175Z Has data issue: false hasContentIssue false

A new model for the infrared emission of IRAS F10214+4724

Published online by Cambridge University Press:  17 August 2012

Andreas Efstathiou
Affiliation:
School of Sciences, European University Cyprus, Engomi, 1516 Nicosia, Cyprus email: a.efstathiou@euc.ac.cy
Natalie Christopher
Affiliation:
Oxford Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Rd, Oxford OX1 3RH, United Kingdom
Aprajita Verma
Affiliation:
Oxford Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Rd, Oxford OX1 3RH, United Kingdom
Ralf Siebenmorgen
Affiliation:
European Southern Observatory, Karl-Schwarzschildstr. 2, 85748 Garching b. Munchen, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a new model for the infrared emission of the high redshift hyperluminous infrared galaxy IRAS F10214+4724 which takes into account recent photometric data from Spitzer and Herschel that sample the peak of its spectral energy distribution. We first demonstrate that the combination of the AGN tapered disc and starburst models of Efstathiou and coworkers, while able to give an excellent fit to the average spectrum of type 2 AGN measured by Spitzer, fails to match the spectral energy distribution of IRAS F10214+4724. This is mainly due to the fact that the ν Sν distribution of the galaxy falls very steeply with increasing frequency (a characteristic of heavy absorption by dust) but shows a silicate feature in emission. We propose a model that assumes two components of emission: clouds that are associated with the narrow-line region and a highly obscured starburst. The emission from the clouds must suffer significantly stronger gravitational lensing compared to the emission from the torus to explain the observed spectral energy distribution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Alexander, D. M., Efstathiou, A., Hough, J. H. et al. 1999, MNRAS, 310, 78CrossRefGoogle Scholar
Broadhurst, T. & Lehar, J. 1995, ApJ (Letters), 450, L41CrossRefGoogle Scholar
Efstathiou, A. & Rowan-Robinson, M. 1995, MNRAS, 273, 649CrossRefGoogle Scholar
Efstathiou, A., Rowan-Robinson, M. & Siebenmorgen, R. 2000, MNRAS, 313, 734CrossRefGoogle Scholar
Efstathiou, A. & Siebenmorgen, R. 2005, A&A, 439, 85Google Scholar
Efstathiou, A. & Siebenmorgen, R. 2009, A&A, 502, 541Google Scholar
Efstathiou, A. 2006, MNRAS, 371, L70.Google Scholar
Farrah, D., Afonso, J., Efstathiou, A., et al. 2003, MNRAS, 343, 585CrossRefGoogle Scholar
Genzel, R. et al. 1998, ApJ, 498, 579Google Scholar
Granato, G. L. & Danese, L. 1994, MNRAS, 268, 235CrossRefGoogle Scholar
Hao, L. et al. 2005, ApJ (Letters), 625, L75Google Scholar
Hao, L. et al. 2007, ApJ (Letters), 655, L77CrossRefGoogle Scholar
Pier, E. A., & Krolik, J. H. 1992, ApJ, 401, 99CrossRefGoogle Scholar
Roche, P. F., Aitken, D. K., Smith, C. H., & Ward, M. J. 1991, MNRAS, 248, 606CrossRefGoogle Scholar
Rowan-Robinson, et al. 1991, Nature, 351, 719CrossRefGoogle Scholar
Rowan-Robinson, M. et al. 1993, MNRAS, 261, 513CrossRefGoogle Scholar
Ruiz, M., Efstathiou, A., Alexander, D. M., & Hough, J. 2001, MNRAS, 325, 995.CrossRefGoogle Scholar
Siebenmorgen, R. & Krügel, E. 1992, A&A, 259, 614Google Scholar
Siebenmorgen, R., Haas, M., Kruegel, E., & Schulz, B. 2005, A&A 436 L5.Google Scholar
Spoon, H. W. W., Marshall, J. A., Houck, J. R. et al. 2007, ApJ (Letters), 654, L49CrossRefGoogle Scholar
Sturm, et al. 2010, A&A, 518, L36.Google Scholar
Teplitz, et al. 2006, ApJ (Letters), 638, L1CrossRefGoogle Scholar