Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T23:06:27.024Z Has data issue: false hasContentIssue false

New population synthesis approach: The golden path to constrain stellar and galactic physics

Published online by Cambridge University Press:  09 October 2020

Nadège Lagarde
Affiliation:
Institut UTINAM, CNRS UMR 6213, Univ. Bourgogne Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, 25010, Besançon Cedex, France email: nadege.lagarde@utinam.cnrs.fr
Céline Reylé
Affiliation:
Institut UTINAM, CNRS UMR 6213, Univ. Bourgogne Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, 25010, Besançon Cedex, France email: nadege.lagarde@utinam.cnrs.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The cornerstone mission of the European Space Agency, Gaia, has revealed properties of 260 000 white dwarfs in the Galaxy, allowing us for the first time to constrain the evolution of white dwarfs with a large sample. Complementary surveys (CoRoT, Kepler, K2, APOGEE and Gaia-ESO), will revolutionize our understanding of the formation and history of our Galaxy, providing accurate stellar masses, radii, ages, distances, and chemical properties for very large samples of stars across different Galactic stellar populations. To exploit the potential of the combination of spectroscopic, seismic and astrometric observations, the population synthesis approach is a very crucial and efficient tool. We develop the Besançon Galaxy model (BGM, Lagarde et al.2017) for which stellar evolution predictions are included, providing the global asteroseismic properties and the surface chemical abundances along the evolution of low- and intermediate-mass stars. For the first time, the BGM can explore the effects of an extra-mixing occurring in red-giant stars Lagarde et al.2019, changing their stellar properties. The next step is to model a consistent treatment of giant stars and their remnants (e.g., white dwarfs). This kind of improvement would help us to constrain stellar and Galactic evolutions.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Althaus, L. G., Córsico, A, H., Isern, J., García-Berro, E. 2010, A&A Rev. 18, 471Google Scholar
Baglin, A. & Fridlund, M. 2006, in The CoRoT Mission Pre-Launch Status, Stellar Seismology and Planet Finding, eds. M. Fridlund, A. Baglin, J. Lochard, & L. Conroy, ESA SP, 1306, 11Google Scholar
Beck, P. G., Montalban, J., Kallinger, T., et al. 2012, Nature, 481, 5510.1038/nature10612CrossRefGoogle Scholar
Bedding, T. R., Mosser, B., Huber, D., et al. 2011, Nature, 471, 60810.1038/nature09935CrossRefGoogle Scholar
Cabral, N., Lagarde, N., Reylé, C., Guilbert-Lepoutre, A., Robin, A., et al. 2019, A&A, 622, A49Google Scholar
Cummings, J. D., Kalirai, J. S., Tremblay, P.-E., Ramirez-Ruiz, E., Choi, J., et al. 2018, ApJ, 866, 2110.3847/1538-4357/aadfd6CrossRefGoogle Scholar
Córsico, A. H., Althaus, L. G., Miller Bertolami, M. M., & Kepler, S. O. 2019, A&A Rev., 27, 7Google Scholar
Czekaj, M. A., Robin, A. C., Figueras, F., Luri, X., & Haywood, M. 2014, A&A, 564, A102Google Scholar
Eisenstein, D. J., Liebert, J., Koester, D., et al. 2006b, AJ, 132, 67610.1086/504424CrossRefGoogle Scholar
Fontaine, G., Brassard, P., & Bergeron, P. 2001, PASP, 113, 40910.1086/319535CrossRefGoogle Scholar
Fontaine, G. & Brassard, P. 2008, PASP, 120, 104310.1086/592788CrossRefGoogle Scholar
Gaia, Collaboration, et al. 2018a, A&A, 616, A1Google Scholar
Gaia, Collaboration, Babusiaux, C., van Leeuwen, F., et al. 2018b, A&A, 616, A10Google Scholar
Genest-Beaulieu, C. & Bergeron, P. 2014, ApJ, 796, 12810.1088/0004-637X/796/2/128CrossRefGoogle Scholar
Gentile Fusillo, N. P., Tremblay, P.-E., Gänsicke, B. T., et al. 2019, MNRAS, 482, 457010.1093/mnras/sty3016CrossRefGoogle Scholar
Gilliland, R. L., Brown, T. M., Christensen-Dalsgaard, J., et al. 2010, PASP, 122, 13110.1086/650399CrossRefGoogle Scholar
Jordan, S. 2007, Astronomical Society of the Pacific Conference Series, Vol. 372, 15th European Workshop on White Dwarfs, ed. Napiwotzki, R. & Burleigh, M. R., 139Google Scholar
Kepler, S. O., Kleinman, S. J., Nitta, A., et al. 2007, MNRAS, 375, 1315CrossRefGoogle Scholar
Kepler, S. O., Pelisoli, I., Koester, D., et al. 2016, MNRAS, 455, 341310.1093/mnras/stv2526CrossRefGoogle Scholar
Koester, D. & Kepler, S. O. 2015, A&A, 583, A86Google Scholar
Lagarde, N., Robin, A., Reylé, C., Nasello, G., et al. 2017, A&A, 601, A27Google Scholar
Lagarde, N., Reylé, C., Robin, A. C., et al. 2019, A&A, 621, A24Google Scholar
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012a, A&A, 548, A10Google Scholar
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012b, A&A, 540, A143Google Scholar
Ricker, G. R. et al. 2015, Journal of Astronomical Telescopes, Instruments, and Systems, 1, 01400310.1117/1.JATIS.1.1.014003CrossRefGoogle Scholar
Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. et al. 2003, A&A, 409, 523Google Scholar
Stello, D., Bruntt, H., Preston, H., & Buzasi, D. 2008, ApJ, 674, L5310.1086/528936CrossRefGoogle Scholar
Tremblay, P.-E., Bergeron, P., & Gianninas, A. 2011, ApJ, 730, 12810.1088/0004-637X/730/2/128CrossRefGoogle Scholar
Vauclair, G 2013, Constraints on white dwarfs structure and evolution from asteroseismology. In: Alecian G, Lebreton Y, Richard O, Vauclair G (eds) EAS Publications Series, EAS Publications Series, vol 63, pp 175?18310.1051/eas/1363020CrossRefGoogle Scholar
Vrard, M., Mosser, B., & Samadi, R. 2016, A&A, 588, A87Google Scholar
Winget, D. E. & Kepler, S. O. 2008, ARA&A, 46, 15710.1146/annurev.astro.46.060407.145250CrossRefGoogle Scholar