Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T21:31:18.389Z Has data issue: false hasContentIssue false

New results on orbital resonances

Published online by Cambridge University Press:  30 May 2022

Renu Malhotra*
Affiliation:
Lunar and Planetary Laboratory, The University of Arizona Tucson, Arizona 85721, USA email: malhotra@arizona.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Perturbative analyses of planetary resonances commonly predict singularities and/or divergences of resonance widths at very low and very high eccentricities. We have recently re-examined the nature of these divergences using non-perturbative numerical analyses, making use of Poincaré sections but from a different perspective relative to previous implementations of this method. This perspective reveals fine structure of resonances which otherwise remains hidden in conventional approaches, including analytical, semi-analytical and numerical-averaging approaches based on the critical resonant angle. At low eccentricity, first order resonances do not have diverging widths but have two asymmetric branches leading away from the nominal resonance location. A sequence of structures called “low-eccentricity resonant bridges” connecting neighboring resonances is revealed. At planet-grazing eccentricity, the true resonance width is non-divergent. At higher eccentricities, the new results reveal hitherto unknown resonant structures and show that these parameter regions have a loss of some – though not necessarily entire – resonance libration zones to chaos. The chaos at high eccentricities was previously attributed to the overlap of neighboring resonances. The new results reveal the additional role of bifurcations and co-existence of phase-shifted resonance zones at higher eccentricities. By employing a geometric point of view, we relate the high eccentricity phase space structures and their transitions to the shapes of resonant orbits in the rotating frame. We outline some directions for future research to advance understanding of the dynamics of mean motion resonances.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Antoniadou, K. I., & Libert, A.-S. 2021, MNRAS, 506, 3010, doi: 10.1093/mnras/stab1900 CrossRefGoogle Scholar
Bailey, B. L., & Malhotra, R. 2009, Icarus, 203, 155, doi: 10.1016/j.icarus.2009.03.044 CrossRefGoogle Scholar
Beaugé, C. 1994, Celestial Mechanics and Dynamical Astronomy, 60, 225, doi: 10.1007/BF00693323 CrossRefGoogle Scholar
Belbruno, E., & Marsden, B. G. 1997, AJ, 113, 1433, doi: 10.1086/118359 CrossRefGoogle Scholar
Beust, H. 2016, A&A, 590, L2, doi: 10.1051/0004-6361/201628638 CrossRefGoogle Scholar
Chiang, E. I., & Jordan, A. B. 2002, AJ, 124, 3430, doi: 10.1086/344605 CrossRefGoogle Scholar
Deck, K. M., Payne, M., & Holman, M. J. 2013, ApJ, 774, 129, doi: 10.1088/0004-637X/774/2/129 CrossRefGoogle Scholar
Dermott, S. F., Malhotra, R., & Murray, C. D. 1988, Icarus, 76, 295, doi: 10.1016/0019-1035(88)90074-7 CrossRefGoogle Scholar
Dermott, S. F., & Murray, C. D. 1983, Nature, 301, 201, doi: 10.1038/301201a0 CrossRefGoogle Scholar
Duncan, M., Quinn, T., & Tremaine, S. 1989, Icarus, 82, 402, doi: 10.1016/0019-1035(89)90047-X CrossRefGoogle Scholar
Duncan, M. J., & Levison, H. F. 1997, Science, 276, 1670, doi: 10.1126/science.276.5319.1670 CrossRefGoogle Scholar
Fernández, J. A., Helal, M., & Gallardo, T. 2018, Planet. Space Sci., 158, 6, doi: 10.1016/j.pss.2018.05.013 CrossRefGoogle Scholar
Gallardo, T. 2019, Icarus, 317, 121, doi: 10.1016/j.icarus.2018.07.002 CrossRefGoogle Scholar
Gladman, B., Marsden, B. G., & Vanlaerhoven, C. 2008, Nomenclature in the Outer Solar System (in The Solar System Beyond Neptune, Barucci, M. A. and Boehnhardt, H. and Cruikshank, D. P. and Morbidelli, A. and Dotson, R. (eds.), University of Arizona Press, Tucson), 4357 Google Scholar
Gladman, B., Lawler, S. M., Petit, J.-M., et al. 2012, AJ, 144, 23, doi: 10.1088/0004-6256/144/1/23 CrossRefGoogle Scholar
Guzzo, M. 2006, Icarus, 181, 475, doi: 10.1016/j.icarus.2005.11.019 CrossRefGoogle Scholar
Hadden, S. 2019, AJ, 158, 238, doi: 10.3847/1538-3881/ab5287 CrossRefGoogle Scholar
Hadden, S., Li, G., Payne, M. J., & Holman, M. J. 2018, AJ, 155, 249, doi: 10.3847/1538-3881/aab88c CrossRefGoogle Scholar
Hadden, S., & Lithwick, Y. 2018, AJ, 156, 95, doi: 10.3847/1538-3881/aad32c CrossRefGoogle Scholar
Hadjidemetriou, J., & Voyatzis, G. 2000, Celestial Mechanics and Dynamical Astronomy, 78, 137 CrossRefGoogle Scholar
Hénon, M. 1966, in IAU Symposium, Vol. 25, The Theory of Orbits in the Solar System and in Stellar Systems, ed. Kontopoulos, G. I., 157 Google Scholar
Henrard, J. 1983, Celestial Mechanics, 31, 115, doi: 10.1007/BF01686813 CrossRefGoogle Scholar
Henrard, J., & Lemaitre, A. 1983, Celestial Mechanics, 30, 197, doi: 10.1007/BF01234306 CrossRefGoogle Scholar
Lan, L., & Malhotra, R. 2019, Celestial Mechanics and Dynamical Astronomy, 131, 39, doi: 10.1007/s10569-019-9917-1 CrossRefGoogle Scholar
Lei, H., & Li, J. 2020, MNRAS, 499, 4887, doi: 10.1093/mnras/staa3115 CrossRefGoogle Scholar
Lithwick, Y., & Wu, Y. 2012, ApJL, 756, L11, doi: 10.1088/2041-8205/756/1/L11 CrossRefGoogle Scholar
Lykawka, P. S., & Mukai, T. 2007, Icarus, 192, 238, doi: 10.1016/j.icarus.2007.06.007 CrossRefGoogle Scholar
Malhotra, R. 1998, Solar System Formation and Evolution: ASP Conference Series, 149, 37 Google Scholar
Malhotra, R. 2019, Geoscience Letters, 6, 12, doi: 10.1186/s40562-019-0142-2 CrossRefGoogle Scholar
Malhotra, R., Lan, L., Volk, K., & Wang, X. 2018, AJ, 156, 55, doi: 10.3847/1538-3881/aac9c3 CrossRefGoogle Scholar
Malhotra, R., Volk, K., & Wang, X. 2016, ApJL, 824, L22, doi: 10.3847/2041-8205/824/2/L22 CrossRefGoogle Scholar
Malhotra, R., & Zhang, N. 2020, MNRAS, 496, 3152, doi: 10.1093/mnras/staa1751 CrossRefGoogle Scholar
Moons, M. 1996, Celestial Mechanics and Dynamical Astronomy, 65, 175 CrossRefGoogle Scholar
Moons, M., & Morbidelli, A. 1993, Celestial Mechanics and Dynamical Astronomy, 56, 273, doi: 10.1007/BF00699737 CrossRefGoogle Scholar
Morbidelli, A. 2002, Modern celestial mechanics: aspects of solar system dynamics (Taylor & Francis London)Google Scholar
Morbidelli, A., Thomas, F., & Moons, M. 1995, Icarus, 118, 322, doi: 10.1006/icar.1995.1194 CrossRefGoogle Scholar
Murray, C. D., & Dermott, S. F. 1999, Solar system dynamics, 1st edn. (New York, New York: Cambridge University Press)Google Scholar
Murray, N., & Holman, M. 1999, Science, 283, 1877, doi: 10.1126/science.283.5409.1877 CrossRefGoogle Scholar
Mustill, A. J., & Wyatt, M. C. 2011, MNRAS, 413, 554, doi: 10.1111/j.1365-2966.2011.18201.x CrossRefGoogle Scholar
Nesvorný, D., & Ferraz-Mello, S. 1997, Icarus, 130, 247, doi: 10.1006/icar.1997.5807 CrossRefGoogle Scholar
Peale, S. J. 1999, ARA&A, 37, 533, doi: 10.1146/annurev.astro.37.1.533 CrossRefGoogle Scholar
Petit, A. C. 2021, Celestial Mechanics and Dynamical Astronomy, 133, 39, doi: 10.1007/s10569-021-10035-7 CrossRefGoogle Scholar
Petrovich, C., Malhotra, R., & Tremaine, S. 2013, ApJ, 770, 24, doi: 10.1088/0004-637X/770/1/24 CrossRefGoogle Scholar
Pousse, A., & Alessi, E. M. 2021, arXiv e-prints, arXiv:2106.14810. 2106.14810Google Scholar
Ramos, X. S., Correa-Otto, J. A., & Beaugé, C. 2015, Celestial Mechanics and Dynamical Astronomy, 123, 453, doi: 10.1007/s10569-015-9646-z CrossRefGoogle Scholar
Roberts, A. C., & Muñoz-Gutiérrez, M. A. 2021, Icarus, 358, 114201, doi: 10.1016/j.icarus.2020.114201 CrossRefGoogle Scholar
Terquem, C., & Papaloizou, J. C. B. 2019, MNRAS, 482, 530, doi: 10.1093/mnras/sty2693 CrossRefGoogle Scholar
Tiscareno, M. S., & Malhotra, R. 2003, AJ, 126, 3122, doi: 10.1086/379554 CrossRefGoogle Scholar
Volk, K., Malhotra, R., & Graham, S. 2021, in AAS/Division of Dynamical Astronomy Meeting, Vol. 53, AAS/Division of Dynamical Astronomy Meeting, 305.01Google Scholar
Voyatzis, G., & Kotoulas, T. 2005, Planet. Space Sci., 53, 1189, doi: 10.1016/j.pss.2005.05.001 CrossRefGoogle Scholar
Wang, X., & Malhotra, R. 2017, AJ, 154, 20, doi: 10.3847/1538-3881/aa762b CrossRefGoogle Scholar
Winter, O. C., & Murray, C. D. 1997, A&A, 319, 290 Google Scholar
Wisdom, J. 1980, AJ, 85, 1122, doi: 10.1086/112778 CrossRefGoogle Scholar
Yu, T. Y. M., Murray-Clay, R., & Volk, K. 2018, AJ, 156, 33, doi: 10.3847/1538-3881/aac6cd CrossRefGoogle Scholar
Zaveri, N., & Malhotra, R. 2021, Research Notes of the AAS, 5, 235 CrossRefGoogle Scholar
Zhu, W., & Dong, S. 2021, Annual Review of Astronomy and Astrophysics, 59, 291, doi: 10.1146/annurev-astro-112420-020055 CrossRefGoogle Scholar