Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T07:18:47.795Z Has data issue: false hasContentIssue false

Non-axisymmetric oscillations of thin twisted magnetic tubes

Published online by Cambridge University Press:  01 September 2007

Michael S. Ruderman*
Affiliation:
Solar Physics and Space Plasma Research Centre (SP2RC), Department of Applied Mathematics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK email: M.S.Ruderman@sheffield.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study non-axisymmetric oscillations of thin twisted magnetic tubes taking the density variation along the tube into account. We use the approximation of the zero-beta plasma. The magnetic field outside the tube is straight and homogeneous, however it is twisted inside the tube. We assume that the azimuthal component of the magnetic field is proportional to the distance from the tube axis, and that the tube is only weakly twisted, i.e. the ratio of the azimuthal and axial components of the magnetic field is small. Using the asymptotic analysis we show that the eigenmodes and eigenfrequencies of the kink and fluting oscillations are described by a classical Sturm-Liouville problem for a second order ordinary differential equation. The main result is that the twist does not affect the kink mode.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Title, A. M. 1999, Astrophys. J. 520, 880CrossRefGoogle Scholar
Banerjee, D., Erdélyi, R., Oliver, R. & O'Shea, E. 2007, Solar Phys., 246, 3CrossRefGoogle Scholar
Bennett, K., Roberts, B., & Narain, U. 1999, Solar Phys., 185, 41CrossRefGoogle Scholar
Bogdan, T. J. 1984, ApJ, 282, 769CrossRefGoogle Scholar
Carter, B. K. & Erdélyi, R. 2007, A&A, 475, 323Google Scholar
Carter, B. K. & Erdélyi, R. 2008, A&A, 481, 239Google Scholar
Dungey, J. W. & Loughhead, R. E. 1954, Austr. J. Phys., 7, 5CrossRefGoogle Scholar
Dymova, M. & Ruderman, M. S.: 2005, Solar Phys., 229, 79CrossRefGoogle Scholar
Edwin, P. M. & Roberts, B. 1983, Solar Phys., 88, 179CrossRefGoogle Scholar
Erdélyi, R. & Carter, B. K. 2006, A&A, 455, 361Google Scholar
Erdélyi, R. & Fedun, V. 2006, Solar Phys., 238, 41CrossRefGoogle Scholar
Erdélyi, R. & Fedun, V. 2007, Solar Phys., 246, 101CrossRefGoogle Scholar
Nakariakov, V., Ofman, L., DeLuca, E. E., Roberts, B. & Davila, J. M. 1999, Science, 285, 862CrossRefGoogle Scholar
Roberts, B. 1981, Solar Phys., 69, 27CrossRefGoogle Scholar
Ruderman, M. S. 2007, Solar Phys., 246, 119CrossRefGoogle Scholar
Ruderman, M. S. & Roberts, B. 2002, ApJ, 577, 475.CrossRefGoogle Scholar
Ryutov, D. D. & Ryutova, M. P. 1976, Sov. Phys.—JETP, 43, 491Google Scholar
Spruit, H. C. 1981, A&A, 98, 155Google Scholar
Spruit, H. C. 1982, Solar Phys., 75, 3CrossRefGoogle Scholar