Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T04:43:04.409Z Has data issue: false hasContentIssue false

Nonlinear force-free modeling of magnetic fields in flare-productive active regions

Published online by Cambridge University Press:  09 September 2016

M. S. Wheatland
Affiliation:
School of Physics, University of Sydney, NSW 2006Australia email: michael.wheatland@sydney.edu.au
S. A. Gilchrist
Affiliation:
NorthWest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301-2245USA email: sgilchrist@nwra.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review nonlinear force-free field (NLFFF) modeling of magnetic fields in active regions. The NLFFF model (in which the electric current density is parallel to the magnetic field) is often adopted to describe the coronal magnetic field, and numerical solutions to the model are constructed based on photospheric vector magnetogram boundary data. Comparative tests of NLFFF codes on sets of boundary data have revealed significant problems, in particular associated with the inconsistency of the model and the data. Nevertheless NLFFF modeling is often applied, in particular to flare-productive active regions. We examine the results, and discuss their reliability.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Amari, T., Boulmezaoud, T. Z. & Aly, J. J. 2006, Astron. Astroph. 446, 691705, doi: 10.1051/0004-6361:20054076 Google Scholar
Amari, T., Canou, A., & Aly, J.-J. 2014, Nature 514, 466469, doi: 10.1038/nature13815 CrossRefGoogle Scholar
Baker, D. N. et al. 2008, Severe Space Weather Events: Understanding Societal and Economic Impacts Workshop Report, National Academies Press: Washington DC, doi: 10.17226/12507 Google Scholar
Canou, A., Amari, T., Bommier, V., Schmieder, B., Aulanier, G., & Li, H. 2009, Astrophys. J. 693, L27L30, doi: 10.1088/0004-637X/693/1/L27 CrossRefGoogle Scholar
del Toro Iniesta, J. C.: 2003, Introduction to Spectropolarimetry, Cambridge University Press, Cambridge, UK, ISBN: 0521818273 CrossRefGoogle Scholar
DeRosa, M. L. et al. 2009, Astrophys. J. 696, 17801791, doi: 10.1088/0004-637X/696/2/1780 CrossRefGoogle Scholar
DeRosa, M. L. et al. 2015, Astrophys. J. 811, 107 (21pp) doi: 10.1088/0004-637X/811/2/107 CrossRefGoogle Scholar
Gilchrist, S. A. & Wheatland, M. S. 2013, Sol. Phys. 282, 283302, doi: 10.1007/s11207-012-0144-0 CrossRefGoogle Scholar
Grad, H. & Rubin, H. 1958, in Proc. 2nd Int. Conf. on Peaceful Uses of Atomic Energy, UN: Geneva, 190197 Google Scholar
Leka, K. D. et al. 2009, Solar Phys. 260, 83108, doi: 10.1007/s11207-009-9440-8 CrossRefGoogle Scholar
Metcalf, T. R. 1994, Solar Phys. 155, 235242, doi: 10.1007/BF00680593 CrossRefGoogle Scholar
Metcalf, T. R., Jiao, L., McClymont, A. N., Canfield, R. C., & Uitenbroek, H. 1995, Astrophys. J. 439, 474481, doi: 10.1086/175188 CrossRefGoogle Scholar
Metcalf, T. R. et al. 2006, Solar Phys. 237, 267296, doi: 10.1007/s11207-006-0170-x CrossRefGoogle Scholar
Metcalf, T. R. et al. 2008, Solar Phys. 247, 269299, doi: 10.1007/s11207-007-9110-7 CrossRefGoogle Scholar
Molodenskii, M. M. 1969, Soviet Astronomy 12, 585588 Google Scholar
Scherrer, P. H. et al. 2012, Solar Phys. 275, 207, doi: 10.1007/s11207-011-9834-2 CrossRefGoogle Scholar
Schrijver, C. J. et al. 2008, Astrophys. J. 675, 16371644, doi: 10.1086/527413 CrossRefGoogle Scholar
Tsuneta, S. et al. 2008, Solar Phys. 249, 167196, doi: 10.1007/s11207-008-9174-z CrossRefGoogle Scholar
Valori, G., Démoulin, P., Pariat, E. & Masson, S. 2013, Astron. Astroph. 553, A38 (14pp), doi: 10.1051/0004-6361/201220982 CrossRefGoogle Scholar
Valori, G., Kliem, B., & Keppens, R. 2005, Astron. Astroph. 433, 335347, doi: 10.1051/0004-6361:20042008 CrossRefGoogle Scholar
Wheatland, M. S. 2007, Solar Phys. 245, 251262, doi: 10.1007/s11207-007-9054-y CrossRefGoogle Scholar
Wheatland, M. S. & Leka, K. D. 2011, Astrophys. J. 728, 112 (12pp), doi: 10.1088/0004-637X/728/2/112 CrossRefGoogle Scholar
Wheatland, M. S., Sturrock, P. A., & Roumeliotis, G. 2000, Astrophys. J. 540, 11501155, doi: 10.1086/309355 CrossRefGoogle Scholar
Wiegelmann, T. 2007, Solar Phys. 240, 227239, doi: 10.1007/s11207-006-0266-3 CrossRefGoogle Scholar
Wiegelmann, T. & Inhester, B. 2010, Astron. Astroph. 516, A107 (5pp), doi: 10.1051/0004-6361/201014391 CrossRefGoogle Scholar
Wiegelmann, T., Inhester, B., & Sakurai, T. 2006, Solar Phys. 233, 215232, doi: 10.1007/s11207-006-2092-z CrossRefGoogle Scholar
Wiegelmann, T., Petrie, G. J. D., & Riley, P. 2015, Space Sci. Rev., 126, Open Access, doi: 10.1007/s11214-015-0178-3 Google Scholar
Wiegelmann, T. & Sakurai, T. 2012, Living Reviews in Solar Physics 9, doi: 10.12942/lrsp-2012-5 CrossRefGoogle Scholar