Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T09:37:31.552Z Has data issue: false hasContentIssue false

Nucleosynthesis in Rotating massive stars and Abundances in the Early Galaxy

Published online by Cambridge University Press:  09 March 2010

Georges Meynet
Affiliation:
Geneva Observatory, Geneva University, CH–1290 Sauverny, Switzerland email: georges.meynet@unige.ch
Raphael Hirschi
Affiliation:
Astrophysics group, Keele University, Lennard-Jones Lab., Keele, ST5 5BG, UK email: r.hirschi@epsam.keele.ac.uk IPMU, University of Tokyo, Kashiwa, Chiba 277-8582, Japan
Sylvia Ekstrom
Affiliation:
Geneva Observatory, Geneva University, CH–1290 Sauverny, Switzerland email: georges.meynet@unige.ch
André Maeder
Affiliation:
Geneva Observatory, Geneva University, CH–1290 Sauverny, Switzerland email: georges.meynet@unige.ch
Cyril Georgy
Affiliation:
Geneva Observatory, Geneva University, CH–1290 Sauverny, Switzerland email: georges.meynet@unige.ch
Patrick Eggenberger
Affiliation:
Geneva Observatory, Geneva University, CH–1290 Sauverny, Switzerland email: georges.meynet@unige.ch
Cristina Chiappini
Affiliation:
Geneva Observatory, Geneva University, CH–1290 Sauverny, Switzerland email: georges.meynet@unige.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss three effects of axial rotation at low metallicity. The first one is the mixing of the chemical species which is predicted to be more efficient in low metallicity environments. A consequence is the production of important quantities of primary 14N, 13C, 22Ne and a strong impact on the nucleosynthesis of the s-process elements. The second effect is a consequence of the first. Strong mixing makes possible the apparition at the surface of important quantities of CNO elements. This increases the opacity of the outer layers and may trigger important mass loss by line driven winds. The third effect is the fact that, during the main-sequence phase, stars, at very low metallicity, reach more easily than their more metal rich counterparts, the critical velocity. We discuss the respective importance of these three effects as a function of the metallicity. We show the consequences for the early chemical evolution of the galactic halo and for explaining the CEMP stars. We conclude that rotation is probably a key feature which contributes in an important way to shape the evolution of the first stellar generations in the Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Akerman, C. J., Carigi, L., Nissen, P. E., Pettini, M., & Asplund, M. 2004, A&A, 414, 931Google Scholar
Andrievsky, S. M., Spite, M., Korotin, S. A., et al. 2009, A&A, 494, 1083Google Scholar
Barkat, Z., Rakavy, G., & Sack, N. 1967, Physical Review Letters, 18, 379CrossRefGoogle Scholar
Beers, T. C. & Christlieb, N. 2005, ARA&A, 43, 531Google Scholar
Bond, J. R., Arnett, W. D., & Carr, B. J. 1984, ApJ, 280, 825CrossRefGoogle Scholar
Cayrel, R., Depagne, E., Spite, M., et al. 2004, A&A, 416, 1117Google Scholar
Cescutti, G. 2008, A&A, 481, 691Google Scholar
Chiappini, C., Ekström, S., Meynet, G., et al. 2008, A&A, 479, L9Google Scholar
Chiappini, C., Hirschi, R., Meynet, G., et al. 2006, A&A, 449, L27Google Scholar
Decressin, T., Charbonnel, C., & Meynet, G. 2007a, A&A, 475, 859Google Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007b, A&A, 464, 1029Google Scholar
Ekström, S., Meynet, G., Chiappini, C., Hirschi, R., & Maeder, A. 2008a, A&A, 489, 685Google Scholar
Ekström, S., Meynet, G., & Maeder, A. 2008b, in IAU Symposium, Vol. 250, IAU Symposium, ed. Bresolin, F., Crowther, P. A., & Puls, J., 209–216CrossRefGoogle Scholar
Ekström, S., Meynet, G., Maeder, A., & Barblan, F. 2008c, A&A, 478, 467Google Scholar
Gratton, R., Sneden, C., & Carretta, E. 2004, ARA&A, 42, 385Google Scholar
Heger, A. & Woosley, S. 2005, in IAU Symposium, Vol. 228, From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution, ed. Hill, V., François, P., & Primas, F., 297–302Google Scholar
Hirschi, R. 2007, A&A, 461, 571Google Scholar
Honda, S., Aoki, W., Kajino, T., et al. 2004, ApJ, 607, 474CrossRefGoogle Scholar
Ishimaru, Y., Wanajo, S., Aoki, W., & Ryan, S. G. 2004, ApJ, 600, L47CrossRefGoogle Scholar
Ishimaru, Y., Wanajo, S., & Prantzos, N. 2006, in International Symposium on Nuclear Astrophysics – Nuclei in the CosmosGoogle Scholar
Karlsson, T., Johnson, J. L., & Bromm, V. 2008, ApJ, 679, 6CrossRefGoogle Scholar
Maeder, A. 2009, Physics, Formation and Evolution of Rotating Stars, ed. Maeder, A.CrossRefGoogle Scholar
Maeder, A. & Meynet, G. 2001, A&A, 373, 555Google Scholar
Maeder, A., Meynet, G., Ekström, S., & Georgy, C. 2009, Communications in Asteroseismology, 158, 72Google Scholar
Masseron, T., Johnson, J. A., Plez, B., et al. 2009, ArXiv e-printsGoogle Scholar
Meynet, G., Ekström, S., & Maeder, A. 2006, A&A, 447, 623Google Scholar
Meynet, G. & Maeder, A. 2002, A&A, 390, 561Google Scholar
Meynet, G. & Maeder, A. 2005, A&A, 429, 581, paperXIGoogle Scholar
Pettini, M., Zych, B. J., Steidel, C. C., & Chaffee, F. H. 2008, MNRAS, 385, 2011CrossRefGoogle Scholar
Pignatari, M., Gallino, R., Meynet, G., et al. 2008, ApJ, 687, L95CrossRefGoogle Scholar
Ryan, S. G., Norris, J. E., & Beers, T. C. 1996, ApJ, 471, 254CrossRefGoogle Scholar
Spite, M., Cayrel, R., Plez, B., et al. 2005, A&A, 430, 655Google Scholar