Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T02:32:14.730Z Has data issue: false hasContentIssue false

Numerical models of VHE emission by magnetic reconnection in X-ray binaries: GRMHD simulations and Monte Carlo cosmic-ray emission

Published online by Cambridge University Press:  30 December 2019

J. C. Rodríguez-Ramírez
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG-USP), Universidade de São Paulo. Cidade Universitaria R. do Matão, 1226 05508-090 São Paulo, SP Brasil email: juan.rodriguez@iag.usp.br
R. Alves Batista
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG-USP), Universidade de São Paulo. Cidade Universitaria R. do Matão, 1226 05508-090 São Paulo, SP Brasil email: juan.rodriguez@iag.usp.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galactic microquasars have been detected at very-high-energies (VHE) (> 100 GeV) and the particle acceleration mechanisms that produce this emission are not yet well-understood. Here we investigate a hadronic emission scenario where cosmic-rays (CRs) are accelerated in magnetic reconnection events by the turbulent, advected-dominated accretion flow (ADAF) believed to be present in the hard state of black hole binaries. We present Monte Carlo simulations of CR emission plus γ-γ and inverse Compton cascades, injecting CRs with a total energy consistent with the magnetic energy of the plasma. The background gas density, magnetic, and photon fields where CRs propagate and interact are modelled with general relativistic (GR), magneto-hydrodynamical simulations together with GR radiative transfer calculations. Our approach is applied to the microquasar Cygnus X-1, where we show a model configuration consistent with the VHE upper limits provided by MAGIC collaboration.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Abeysekara, A. et al. 2018, Nature, 562, 82 10.1038/s41586-018-0565-5CrossRefGoogle Scholar
Albert, J. et al. 2007, ApJ, 665, L51 10.1086/521145CrossRefGoogle Scholar
Alves Batista, R., Dundovic, A., Erdmann, M., Kampert, K.-H., Kuempel, D., Müller, G., Sigl, G.; van Vliet, A., Walz, D., Winchen, T. 2016, JCAP, 05, 038A Google Scholar
Bosch-Ramon, V., Khangulyan, D., & Aharonian, F. A. 2008, A&A, 489, L21 Google Scholar
Dal Pino, de Gouveia, E. M. & Lazarian, A. 2005, A&A, 441, 845,Google Scholar
Dal Pino, de Gouveia, E. M., Piovezan, P. P., & Kadowaki, L. H. S. 2010, A&A, 518, A5 Google Scholar
Dolence, J., Gammie, C., Mościbrodzka, M., & Leung, P-A. 2009, ApJ, 184, 387 10.1088/0067-0049/184/2/387CrossRefGoogle Scholar
Gammie, C., McKinney, J., & Toth, G. 2003, ApJ, 598, 444 10.1086/374594CrossRefGoogle Scholar
Kadowaki, L. H. S., Dal Pino, de Gouveia, E. M., & Singh, C. B. 2015, ApJ, 802, 113 10.1088/0004-637X/802/2/113CrossRefGoogle Scholar
Kadowaki, L. H. S., Dal Pino, de Gouveia, E. M., & Stone, J. 2018, ApJ, 864, 52 10.3847/1538-4357/aad4ffCrossRefGoogle Scholar
Khiali, B., Dal Pino, de Gouveia, E. M., & del Valle, M. V. 2015, MNRAS, 449, 34 CrossRefGoogle Scholar
Kowal, G., de Gouveia Dal Pino E. M., & Lazarian, A. 2011, ApJ, 735, 102 CrossRefGoogle Scholar
Kowal, G., de Gouveia Dal Pino E. M., & Lazarian, A. 2012, PRL, 108, 1102 CrossRefGoogle Scholar
Collaboration, MAGIC 2017, MNRAS, 472, 3474 Google Scholar
Mościbrodzka, M., Gammie, C. F., Dolence, J. C., Shiokawa, H., & Leung, P. K. 2009, ApJ, 706, 497 10.1088/0004-637X/706/1/497CrossRefGoogle Scholar
Narayan, R., & McClintock, J. E. 2008, NewAr, 51, 733 10.1016/j.newar.2008.03.002CrossRefGoogle Scholar
O’ Riordan, M., Pe’er, A. & McKinney, J. 2016, ApJ, 819, 95 CrossRefGoogle Scholar
Orosz, J. A., McClintock, J. E., Aufdenberg, J. P., Remillard, R. A., Reid, M. J., Narayan, R., & Gou, L. 2011, ApJ, 742, 84 10.1088/0004-637X/742/2/84CrossRefGoogle Scholar
Reid, M. J., McClintock, J. E., Narayan, R., Gou, L., Remillard, R. A., & Orosz, J. A. 2011, ApJ, 742, 83 10.1088/0004-637X/742/2/83CrossRefGoogle Scholar
Reynoso, M. M., & Romero, G. E. 2009, A&A, 493, 1 Google Scholar
Rodríguez-Ramírez, J. C., de Gouveia Dal Pino E. M., & Alves Batista, R. A. 2018, arXiv:1811.02812Google Scholar
Romero, G. E., Vieyro, F. L. & Vila, G. S. 2010, A&A, 519, 109 Google Scholar
Singh, C. B., de Gouveia Dal Pino E. M., & Kadowaki, L. H. S. 2015, ApJ, 799, L20 10.1088/2041-8205/799/2/L20CrossRefGoogle Scholar
Vieyro, F. L. & Romero, G. E. 2012, A&A, 542, A7 Google Scholar
Yuan, F. & Narayan, R. 2014, ARA&A, 52, 529 10.1146/annurev-astro-082812-141003CrossRefGoogle Scholar