Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:28:47.721Z Has data issue: false hasContentIssue false

Numerical study of active galactic nucleus feedback in an elliptical galaxy with MACER

Published online by Cambridge University Press:  07 April 2020

Feng Yuan
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai200030, China email: fyuan@shao.ac.cn
Jeremiah P. Ostriker
Affiliation:
Department of Astronomy, Columbia University, 550 W. 120th Street, New York, USA
DooSoo Yoon
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai200030, China email: fyuan@shao.ac.cn
Ya-Ping Li
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai200030, China email: fyuan@shao.ac.cn
Luca Ciotti
Affiliation:
Department of Physics and Astronomy, University of Bologna, 40129Bologna, Italy
Zhao-Ming Gan
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai200030, China email: fyuan@shao.ac.cn
Luis C. Ho
Affiliation:
Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing100871, China Department of Astronomy, School of Physics, Peking University, Beijing100871, China
Fulai Guo
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai200030, China email: fyuan@shao.ac.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper summarizes our recent works of studying AGN feedback in an isolated elliptical galaxy by performing high-resolution hydrodynamical numerical simulations. Bondi radius is resolved and the mass accretion rate of the black hole is calculated. The most updated AGN physics, namely the discrimination of cold and hot accretion modes and the exact descriptions of the AGN radiation and wind for a given accretion rate are adopted and their interaction with the gas in the host galaxy is calculated. Physical processes such as star formation and SNe feedback are taken into account. Consistent with observation, we find the AGN spends most of the time in the low-luminosity regime. AGN feedback overall suppresses the star formation; but depending on location in the galaxy and time, it can also enhance it. The light curve of specific star formation rate is not synchronous with the AGN light curve. These results put a serious challenge to the observational test of the relation between AGN activity and star formation. We find that wind usually plays a dominant role in controlling the AGN luminosity and star formation, but radiation also cannot be neglected.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Cheung, E., Bundy, K., Cappellari, M., et al. 2016, Natur, 533, 50410.1038/nature18006CrossRefGoogle Scholar
Ciotti, L., Pellegrini, S., Negri, A., & Ostriker, J. P. 2017, ApJ, 835, 1510.3847/1538-4357/835/1/15CrossRefGoogle Scholar
Ciotti, L., & Ostriker, J. P. 2012, in Hot Interstellar Matter in Elliptical Galaxies, Astrophysics and Space Science Library, Vol. 378 (Berlin: Springer-Verlag), 8310.1007/978-1-4614-0580-1_4Google Scholar
Fabian, A. C. 2012, ARA&A, 50, 45510.1146/annurev-astro-081811-125521CrossRefGoogle Scholar
Gan, Z., Yuan, F., Ostriker, J. P., Ciotti, L, Novak, G. S., 2014, ApJ, 789, 15010.1088/0004-637X/789/2/150CrossRefGoogle Scholar
Gofford, J., Reeves, J. N., McLaughlin, D. E., et al. 2015, MNRAS, 451, 416910.1093/mnras/stv1207CrossRefGoogle Scholar
Harrison, C. M. 2017, NatAs, 1, 0165Google Scholar
King, A., & Pounds, K. 2015, ARA&A, 53, 11510.1146/annurev-astro-082214-122316CrossRefGoogle Scholar
Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 51110.1146/annurev-astro-082708-101811CrossRefGoogle Scholar
Korol, V., Ciotti, L. & Pellegrini, S. 2016, MNRAS, 460, 118810.1093/mnras/stw1029CrossRefGoogle Scholar
Liu, G., Zakamska, N. L., Greene, J. E., Nesvadba, N. P. H., & Liu, X. 2013, MNRAS, 436, 257610.1093/mnras/stt1755CrossRefGoogle Scholar
Naab, T. & Ostriker, J. P. 2017, ARA&A, 55, 5910.1146/annurev-astro-081913-040019CrossRefGoogle Scholar
Negri, A., & Volonteri, M. 2017, MNRAS, 467, 347510.1093/mnras/stx362CrossRefGoogle Scholar
Pellegrini, S., Ciotti, L., Negri, A., & Ostriker, J. P. 2018, ApJ, 856, 11510.3847/1538-4357/aaae07CrossRefGoogle Scholar
Schawinski, K., Koss, M., Berney, S., & Sartori, L. F. 2015, MNRAS, 451, 251710.1093/mnras/stv1136CrossRefGoogle Scholar
Wang, Q. D., Nowak, M. A., Markoff, S. B., et al. 2013, Sci, 341, 98110.1126/science.1240755CrossRefGoogle Scholar
Xie, F., & Yuan, F, 2012, MNRAS, 427, 158010.1111/j.1365-2966.2012.22030.xCrossRefGoogle Scholar
Xie, F., Yuan, F., & Ho, L. C. 2017, ApJ, 844, 4210.3847/1538-4357/aa7950CrossRefGoogle Scholar
Xue, Y. Q. 2017, NewAR, 79, 59CrossRefGoogle Scholar
Yoon, D., Yuan, F., Gan, Z. M.et al. 2018, ApJ, in press (arXiv:1803.03675)Google Scholar
Yuan, F., & Narayan, R. 2014, ARA&A, 52, 52910.1146/annurev-astro-082812-141003CrossRefGoogle Scholar
Yuan, F., Gan, Z., Narayan, R. Sadowski, A., Bu, D., Bai, X. 2015, ApJ, 804, 10110.1088/0004-637X/804/2/101CrossRefGoogle Scholar
Yuan, F., Yoon, D., Li, Y., Gan, Z., Ho, L. C., Guo, F. 2018, ApJ, 857, 12110.3847/1538-4357/aab8f8CrossRefGoogle Scholar