Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T14:24:58.930Z Has data issue: false hasContentIssue false

Obscured quasars at high redshift in the UKIDSS Ultra Deep Survey

Published online by Cambridge University Press:  25 July 2014

Ismael Botti
Affiliation:
University of Nottingham, School of Physics & Astronomy, Nottingham, NG7 2RD, U.K. email: ppxib1@nottingham.ac.uk, omar.almaini@nottingham.ac.uk
Omar Almaini
Affiliation:
University of Nottingham, School of Physics & Astronomy, Nottingham, NG7 2RD, U.K. email: ppxib1@nottingham.ac.uk, omar.almaini@nottingham.ac.uk
Will Hartley
Affiliation:
ETH Zurich, Switzerland email: hartleyw@phys.ethz.ch
Alice Mortlock
Affiliation:
Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ, U.K. email: alicem@roe.ac.uk
Paulina Lira
Affiliation:
Depto. de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Santiago, Chile email: plira@das.uchile.cl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Obscured quasars hidden in deep X-ray surveys can be recovered by looking at mid-infrared wavelengths, where dust re-radiates the absorbed radiation. Here we present a sample of obscured quasars in the redshift range 1 < z < 4 based on data from the UKIDSS Ultra-Deep Survey (UDS), the deepest near-IR survey over ~ 1 sq. deg. to date. Candidates that are primarily selected by their 24 μm emission are probed by decomposing their spectral energy distribution (SED) to disentangle the emission from the AGN and its host galaxy. We show preliminary results on their host galaxy properties as well as their clustering, showing that obscured quasars are found in galaxies located in the green valley, residing in dark matter haloes not different from normal galaxies at those redshifts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bongiorno, A., Lusso, E., Comastri, A., Vignali, C., et al. 2012, MNRAS, 427, 3103Google Scholar
Bruzual, A. G. & Charlot, S. 2003, MNRAS, 344, 1000Google Scholar
Calzetti, D., Armus, L., Bhlin, R. C., et al. 2000, ApJ, 533, 682Google Scholar
Cirasuolo, M., McLure, R. J., Dunlop, J. S., et al. 2010, MNRAS, 401, 1166Google Scholar
Comastri, F., Fiore, C. Vignali, et al. 2001, MNRAS 327, 781CrossRefGoogle Scholar
Di Matteo, T., Springel, V. & Hernquist, L. 2005, Nature, 433, 604CrossRefGoogle Scholar
Ferrarese, L. 2002, ApJ, 578, 90CrossRefGoogle Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, 9Google Scholar
Gebhardt, K., Bender, R., Bower, G., et al. 2000, ApJ, 539, L13Google Scholar
Gendreau, K., Mushotzky, R., Fabian, A.et al. 1995, PASJ, 47, L5Google Scholar
Gilli, R., Salvati, M., Hasinger, G. 2001, A&A 366, 407Google Scholar
Hartley, W. G., Almaini, O., Mortlock, A., et al. 2013, MNRAS, 431, 304Google Scholar
Lusso, E., Comastri, A., Vignali, C., et al. 2011, A&A, 534, 110Google Scholar
Magorrian, J.et al. 1998, AJ, 115, 2285Google Scholar
Marconi, A. & Hunt, L. K. 2003, ApJL, 589, 21Google Scholar
Mullaney, J. R., Alexander, D. M., Goulding, A. D., et al. 2011, MNRAS, 414, 1082Google Scholar
Prévot, M. L., Lequeux, J., Maurice, E., et al. 1984, A&A, 132, 389Google Scholar
Richards, G., Lacy, M., Storrie-Lombardi, L., et al. 2006, ApJS, 166, 470Google Scholar
Silk, J. & Rees, M. J. 1998, A&A, 331, 1Google Scholar
Tremaine, S., Gebhardt, K., Bender, R., et al. 2002, ApJ, 574, 740Google Scholar
Williams, R. J., Quadri, R. F., Franx, M., et al. 2009, ApJ, 691, 1879Google Scholar