Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T06:26:57.504Z Has data issue: false hasContentIssue false

Observational constraints on the multiphase ISM

Published online by Cambridge University Press:  05 March 2015

Mark G. Wolfire*
Affiliation:
Astronomy Department, University of Maryland, College Park, MD 20742 email: mwolfire@astro.umd.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In recent years we have seen a wealth of new observations and analysis that sheds light on the distribution and physical properties of various ISM phases. In particular the thermal pressure from C I (Jenkins & Tripp 2011) shows the bulk of the CNM phase with a log normal pressure distribution. It appears that thermal instability is important for phase separation, but with with a thermal pressure variation about the mean driven by turbulence. In additional, there is evidence from C I, H2, and complex molecules, of both higher and lower pressure environments. An additional “phase“ that is of increasing interest for high z, low metallicity galaxies is the C+/H2 gas that is not traced by H I or CO. This review presents the observational evidence for the existence and physical properties of these various ISM phases.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJ 710, 133CrossRefGoogle Scholar
Bowen, D. V., Jenkins, E. B., Tripp, T. M., et al. 2008, ApJS 176, 59CrossRefGoogle Scholar
Braun, R., Thilker, D. A., Walterbos, R. A. M., & Corbelli, E. 2009, ApJ 695, 937CrossRefGoogle Scholar
de Avillez, M. A. & Breitschwerdt, D. 2005, ApJ (Letters) 634, L65CrossRefGoogle Scholar
Dickey, J. M., McClure-Griffiths, N., Gibson, S. J., et al. 2012, arXiv:1207.0891Google Scholar
Dickey, J. M., Strasser, S., Gaensler, B. M., et al. 2009, ApJ 693, 1250CrossRefGoogle Scholar
Falgarone, E., Godard, B., Cernicharo, J., et al. 2010, A&A 521, L15Google Scholar
Falgarone, E., Verstraete, L., Pineau Des Forêts, G., & Hily-Blant, P. 2005, A&A 433, 997Google Scholar
Godard, B., Falgarone, E. & Pineau Des Forêts, G. 2009, A&A 495, 847Google Scholar
Goldsmith, P. F., Velusamy, T., Li, D., & Langer, W. D. 2010, ApJ 715, 1370CrossRefGoogle Scholar
Grenier, I. A., Casandjian, J.-M., & Terrier, R. 2005, Science 307, 1292Google Scholar
Habart, E., Abergel, A., Boulanger, F., et al. 2011, A&A 527, A122Google Scholar
Heiles, C. 1997, ApJ 481, 193CrossRefGoogle Scholar
Heiles, C. & Troland, T. H. 2003, ApJ 586, 1067CrossRefGoogle Scholar
Miville-Deschênes, M.-A., Martin, P. G., Abergel, A., et al. 2010, A&A 518, L104Google Scholar
Molinari, S., Swinyard, B., Bally, J., et al. 2010, A&A 518, L100Google Scholar
Ingalls, J. G., Bania, T. M., Boulanger, F., et al. 2011, ApJ 743, 174Google Scholar
Jenkins, E. B. & Tripp, T. M. 2011, ApJ 734, 65CrossRefGoogle Scholar
Kim, C.-G., Kim, W.-T., & Ostriker, E. C. 2011, ApJ 743, 25CrossRefGoogle Scholar
Passot, T. & Vázquez-Semadeni, E. 1998, Phys. Rev. E 58, 4501CrossRefGoogle Scholar
Planck collaboration 2011, Planck early results 17, A&A 536, 17Google Scholar
Peek, J. E. G., Begum, A., Douglas, K. A., et al. 2010, ASPC 438, 393Google Scholar
Rachford, B. L., Snow, T. P., Destree, J. D., et al. 2009, ApJS 180, 125Google Scholar
Wolfire, M. G., Hollenbach, D., & McKee, C. F. 2010, ApJ 716, 1191Google Scholar
Wolfire, M. G., McKee, C. F., Hollenbach, D., & Tielens, A. G. G. M. 2003, ApJ 587, 278CrossRefGoogle Scholar