Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T18:38:25.207Z Has data issue: false hasContentIssue false

Observations of Complex Molecules in Low-Mass Protostars

Published online by Cambridge University Press:  21 December 2011

Nami Sakai
Affiliation:
Department of Physics and Research Center for the Early Universe, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan email: nami@phys.s.u-tokyo.ac.jp
Satoshi Yamamoto
Affiliation:
Department of Physics and Research Center for the Early Universe, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan email: nami@phys.s.u-tokyo.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low-mass star forming regions are rich inventories of complex organic molecules. Furthermore, they show significant chemical diversity even among sources in a similar physical evolutionary stage (i.e. Class 0 sources). One distinct case is the hot corino chemistry characterized by rich existence of saturated complex organic molecules such as HCOOCH3 and C2H5CN, whereas the other is the warm carbon-chain chemistry (WCCC) characterized by extraordinary richness of unsaturated complex organic molecules such as carbon-chain molecules. We here summarize these observational achievements during the last decade, and present a unified picture of carbon chemistry in low-mass protostellar cores. The chemical diversity most likely originates from the source-to-source difference in chemical compositions of grain mantles. In particular, the gas-phase abundance of CH4 evaporated from grain mantles is thought to be a key factor for appearance of WCCC. The origin of the diversity and its evolution to protopranetary disks are discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Agúndez, M., Cernicharo, J., Guélin, M., Gerin, M., McCarthy, M. C., & Thaddeus, P. 2008, A&A, 478, L19Google Scholar
Aikawa, Y., Wakelam, V., Garrod, R. T., & Herbst, E. 2008, ApJ, 674, 984CrossRefGoogle Scholar
Benson, P. J., Caselli, P., & Myers, P. C. 1998, ApJ, 506, 743CrossRefGoogle Scholar
Blake, G. A., Sutton, E. C., Masson, C. R., & Phillips, T. G. 1987, ApJ, 315, 621CrossRefGoogle Scholar
Blake, G. A., van Dischoeck, E. F., Jansen, D. J., Groesbeck, T. D., & Mundy, L. G. 1994, ApJ, 428, 680CrossRefGoogle Scholar
Bottinelli, S., et al. , 2004, ApJ, 615, 354CrossRefGoogle Scholar
Bottinelli, S., et al. , 2004, ApJ, 617, L69CrossRefGoogle Scholar
Bottinelli, S., Ceccarelli, C., Williams, J. P., & Lefloch, B. 2007, A&A, 463, 601Google Scholar
Cazaux, S., et al. , 2003, ApJ, 593, L51CrossRefGoogle Scholar
Charnley, S. B., Tielens, A. G. G. M., & Rodgers, S. D. 1997, ApJ, 482, L203CrossRefGoogle Scholar
Collings, M. P., et al. , 2004, MNRAS, 354, 1133CrossRefGoogle Scholar
Cronin, J. R. & Pizzarello, S. 1997, Sci., 275, 951CrossRefGoogle Scholar
Garrod, R. T. & Herbst, E. 2006, A&A, 457, 927Google Scholar
Harada, N. & Herbst, E. 2008, ApJ, 685, 272CrossRefGoogle Scholar
Hassel, G. E., Herbst, E., & Garrod, R. T. 2008, ApJ, 681, 1385CrossRefGoogle Scholar
Herbst, E. 1983, ApJS, 53, 41CrossRefGoogle Scholar
Herbst, E. & van Dishoeck, E. F. 2009, ARAA, 47, 427CrossRefGoogle Scholar
Jørgensen, J. K., Schoier, F. L., & van Dishoeck, E. F. 2002, A&A, 389, 908Google Scholar
Jørgensen, J. K., Bourke, T. L., Myers, P. C., Schoier, F. L., van Dishoeck, E. F., & Wilner, D. J. 2005, ApJ, 632, 973CrossRefGoogle Scholar
Jørgensen, J. K., et al. , 2007, ApJ, 659, 479CrossRefGoogle Scholar
Kaifu, N., et al. , 2004, PASJ, 56, 69CrossRefGoogle Scholar
Kuan, Y.-J., et al. , 2004, ApJ, 616, L27CrossRefGoogle Scholar
Millar, T. J., Herbst, E., & Charnley, S. B. 1991, ApJ, 369, 147CrossRefGoogle Scholar
Nomura, H. & Millar, T. J. 2004, A&A, 414, 409Google Scholar
Oberg, K. 2008, ApJ, 678, 1032CrossRefGoogle Scholar
Parise, B., et al. , 2006, A&A, 453, 949Google Scholar
Sakai, N., Sakai, T., & Yamamoto, S. 2006, PASJ, 58, L15CrossRefGoogle Scholar
Sakai, N., Sakai, T., Osamura, Y., & Yamamoto, S. 2007, ApJ, 667, L65CrossRefGoogle Scholar
Sakai, N., Sakai, T., Hirota, T., & Yamamoto, S. 2008a, ApJ, 672, 371CrossRefGoogle Scholar
Sakai, N., Sakai, T., & Yamamoto, S. 2008b, ApJ, 673, L71CrossRefGoogle Scholar
Sakai, N., Sakai, T., & Yamamoto, S. 2008c, Ap&SS, 313, 153Google Scholar
Sakai, N., Sakai, T., Hirota, T., Burton, M., & Yamamoto, S. 2009a, ApJ, 697, 769CrossRefGoogle Scholar
Sakai, N., Sakai, T., Hirota, T., & Yamamoto, S. 2009b, ApJ, 702, 1025CrossRefGoogle Scholar
Sakai, N., Sakai, T., Hirota, T., & Yamamoto, S. 2010, ApJ, 722, 1633CrossRefGoogle Scholar
Suzuki, H., et al. , 1992, ApJ, 392, 551CrossRefGoogle Scholar
van Dishoeck, E. F., Blake, G. A., Jansen, D. J., & Groesbeck, T. D. 1995, ApJ, 447, 760CrossRefGoogle Scholar
Watanabe, N. & Kouchi, A. 2002, ApJ, 571, L73CrossRefGoogle Scholar