No CrossRef data available.
Article contents
Observations of Gravitational-wave Afterglows
Published online by Cambridge University Press: 27 February 2023
Abstract
GW170817, the merger of two neutron stars witnessed through both its gravitational wave siren and its glow at all wavelengths of light, represents the first multi-messenger detection of a compact binary merger. The association of the GW in-spiral signal from GW170817 with a γ-ray burst, a kilonova, and a non-thermal afterglow spanning all bands of the electromagnetic spectrum, has provided rich constraints on the physics and astrophysics of neutron stars. Starting from the example of GW170817, I briefly summarize recent results on observations of electromagnetic afterglows from gravitational wave triggers. In the light of these results, I highlight some key questions that are yet to be answered after the GW170817 discovery. I conclude by commenting briefly on some opportunities that lie in front of us, as improvements in ground-based gravitational wave detectors’ sensitivities will transform a trickle of multi-messenger discoveries into a flood, bringing the field of gravitational wave astronomy from its infancy to its maturity.
- Type
- Contributed Paper
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union