Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T14:56:42.048Z Has data issue: false hasContentIssue false

On phase relation between toroidal and poloidal magnetic fields in the solar cycle 23

Published online by Cambridge University Press:  01 September 2007

S. I. Zharkov
Affiliation:
Department of Applied Mathematics, University of Sheffield, Sheffield, UK email: s.zharkov@sheffield.ac.uk
Elena Gavryuseva
Affiliation:
Arcetri Observatory/University of Florence, Florence, Italy, email: elena@arcetri.astro.it
Valentyna V. Zharkova
Affiliation:
Department of Computing and Mathematics, University of Bradford, Bradford, UK, email: v.v.zharkova@brad.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Phase relations is extracted at different latitudes between the weak background solar magnetic (poloidal) field and strong magnetic field associated with sunspots (toroidal field) by comparing low-resolution images from Wilcox Solar Observatory (WSO) and the high-resolution SOHO/MDI magnetograms. Sunspot areas and excess flux in all latitudinal zones (averaged with a sliding 1 year filter) reveal a strong positive correlation with the absolute and excess solar magnetic fields with a timelag of zero and ∼ 3 years. The residuals of a sunspot magnetic excess flux averaged by one year from those by 4 years are shown to have well defined periodic temporal and spatial structures. The periods of these structures are close to π/4 (π≈ 11 years). The structures have maxima at −40^ and +40^ and reveal spatial drifts with time either towards the equator or the poles depending on a latitude of sunspot occurences.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Gavryuseva, E., 2006, News of the Academy of Sciences, Izv. RAN, Ser. Physics, 70, No.1, 102Google Scholar
Hathaway, D.H.: 2005, ASP-CS, 346, 19Google Scholar
Holder, Z., Canfield, R.C.McMullen, R.A., Nandy, D., Howard, A.F. & Pevtsov, A.A.: 2004, ApJ, 611, 1149Google Scholar
Howard, R.F.: 1991, Solar Phys., 136, 251Google Scholar
Kitchatinov, L.L. and Rudiger, G : 1999, A&A, 344, 911.Google Scholar
Krivodubskij, V.N.: 2005, Astron. Nachr., AN, 326, 6174Google Scholar
Maunder, E.W.MNRAS, 64, 747, 1904CrossRefGoogle Scholar
Nandi, N. & Choudhuri, A.R.: ApJ, 551: 576, 2001Google Scholar
Ossendrijver, M.: The solar dynamo, A&AR, 11 287, 2003Google Scholar
Stix, M.:1976, Differential rotation and the solar dynamo, MNRAS, 47: 243Google Scholar
Temmer, M., Veronig, A., Hanslmeier, A.: A&A, 390: 707715, 2002Google Scholar
Tobias, S.M.: 2002, Phil.Trans.R.Soc.London, 360, 2741Google Scholar
Vainstein, S.I., Zeldovich, Ya.B, Ruzmaikin, A.A,: 1980, Turbulent Dynamo in Astrophysics, Nauka, MoscowGoogle Scholar
Yoshimura, H.: 1981 ApJ, 247: 1102.CrossRefGoogle Scholar
Zharkov, S.I. and Zharkova, V.V.: 2006, Adv. Sp. Res., 38 N5, 868CrossRefGoogle Scholar
Zharkov, S. I., Gavryuseva, E. and Zharkova, V. V.: 2007, Solar Phys., in pressGoogle Scholar
Zharkov, S. I., Zharkova, V. V. and Ipson, S. S.: 2005, Solar Phys., 228/1, 401Google Scholar
Zharkova, V. V., Ipson, S. S., Zharkov, S. I.Benkhalil, A., Aboudarham, J. and Fuller, N.: 2005a, Solar Phys., 228/1, 134Google Scholar
Zharkova, V. V., Zharkov, S. I. and Benkhalil, A.K.: 2005b, MemSAI, 75, 1072Google Scholar
Zharkova, V.V. and Zharkov, S.I.: 2007, Adv. Sp. Res., doi:10.1016/j.asr.2007.02.082Google Scholar