Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T10:47:26.523Z Has data issue: false hasContentIssue false

On the Lyapunov exponents of the asteroidal motion subject to resonances and encounters

Published online by Cambridge University Press:  01 August 2006

Ivan I. Shevchenko*
Affiliation:
Pulkovo Observatory of the Russian Academy of Sciences, Pulkovskoje ave. 65-1, St. Petersburg 196140, Russia email: iis@gao.spb.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In theoretical as well as practical issues of the asteroidal hazard problem, it is important to be able to assess the degree of predictability of the orbital motion of asteroids. Some asteroids move in a virtually predictable way, others do not. The characteristic time of predictability of any motion is nothing but the Lyapunov time (the reciprocal of the maximum Lyapunov exponent) of the motion. In this report, a method of analytical estimation of the maximum Lyapunov exponents of the orbital motion of asteroids is described in application for two settings of the problem. Namely, the following two types of the motion are considered: (1) the motion close to the ordinary or three-body mean motion resonances with planets, and (2) the motion in highly eccentric orbits subject to moderately close encounters with planets. Whatever different these settings may look, the analytical treatment is universal: it is performed within a single framework of the general separatrix map theory. (Recall that the separatrix maps describe the motion near the separatrices of a nonlinear resonance.) The analytical estimates of the Lyapunov times are compared to known numerical ones, i.e., to known estimates obtained by means of numerical integration of the orbits.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Bretagnon, P. 1990, Astron. Astrophys. 231, 561Google Scholar
Chirikov, B. V. 1977, Nonlinear Resonance, (Novosibirsk: Izdatel'stvo NGU) (In Russian)Google Scholar
Chirikov, B. V. 1979, Phys. Rep. 52, 263CrossRefGoogle Scholar
Chirikov, B. V. & Shepelyansky, D. L. 1984, Physica, D 13, 395Google Scholar
Chirikov, B. V. & Vecheslavov, V. V. 1986, INP Preprint, 86 184Google Scholar
Chirikov, B. V. & Vecheslavov, V. V. 1989, Astron. Astrophys. 221, 146Google Scholar
Froeschlé, Cl. 1984, Celest. Mech. 34, 95CrossRefGoogle Scholar
Hairer, E., N⊘rsett, S. P. & Wanner, G. 1987, Solving Ordinary Differential Equations I. Nonstiff Problems, (Berlin: Springer-Verlag)CrossRefGoogle Scholar
Holman, M. J. & Murray, N. W. 1996, Astron. J. 112, 1278CrossRefGoogle Scholar
Knezević, Z. & Milani, A. 2000, PreprintGoogle Scholar
Kouprianov, V. V. & Shevchenko, I. I. 2003, Astron. Astrophys. 410, 749CrossRefGoogle Scholar
Lichtenberg, A. J. & Lieberman, M. A. 1992, Regular and Chaotic Dynamics, (New York: Springer-Verlag)CrossRefGoogle Scholar
Milani, A. & Nobili, A. M. 1993, Celest. Mech. Dyn. Astron. 56, 323CrossRefGoogle Scholar
Milani, A., Nobili, A. M. & Knezević Z. 1997, Icarus 125, 13CrossRefGoogle Scholar
Morbidelli, A. & Nesvorný, D. 1999, Icarus 139, 295CrossRefGoogle Scholar
Murray, N. W. & Holman, M. J. 1997, Astron. J. 114, 1246CrossRefGoogle Scholar
Murray, N., Holman, M. & Potter, M. 1998, Astron. J. 116, 2583CrossRefGoogle Scholar
Nesvorný, D. & Morbidelli, A. 1998, Astron. J. 116, 3029CrossRefGoogle Scholar
Nesvorný, D. & Morbidelli, A. 1999, Celest. Mech. Dyn. Astron. 71, 243CrossRefGoogle Scholar
Petrosky, T. Y. 1986, Phys. Letters, A 117, 328CrossRefGoogle Scholar
Shevchenko, I. I. 1998a, Phys. Letters, A 241, 53CrossRefGoogle Scholar
Shevchenko, I. I. 1998b, Physica Scripta 57, 185CrossRefGoogle Scholar
Shevchenko, I. I. 1999, Celest. Mech. Dyn. Astron. 73, 259CrossRefGoogle Scholar
Shevchenko, I. I. 2000a, Izvestia GAO, 214, 153 (In Russian)Google Scholar
Shevchenko, I. I. 2000b, J. Exp. Theor. Phys., 91, 615 [ZhETP 118, 707]CrossRefGoogle Scholar
Shevchenko, I. I. 2002, Cosmic Res., 40, 296 [Kosmich. Issled., 40, 317]CrossRefGoogle Scholar
Shevchenko, I. I. & Kouprianov, V. V. 2002, Astron. Astrophys. 394, 663CrossRefGoogle Scholar
Shevchenko, I. I., Kouprianov, V. V. & Melnikov, A. V. 2003, Solar System Res., 37, 74 [Astronomicheskii Vestnik, 37, 80]CrossRefGoogle Scholar
Shevchenko, I. I. 2004a, in: Byrd, G. (eds.), Order and Chaos in Stellar and Planetary Systems, ASP Conf. Series, vol. 316, p. 20Google Scholar
Shevchenko, I. I. 2004b, JETP Letters, 79, 523 [Pis'ma Zh. Eksp. Teor. Fiz., 79, 651]CrossRefGoogle Scholar
Tancredi, G. 1995, Astron. Astrophys. 299, 288Google Scholar
Tancredi, G. 1999, Celest. Mech. Dyn. Astron. 70, 181CrossRefGoogle Scholar
Vecheslavov, V. V. & Chirikov, B. V. 1988, Sov. Astron. Letters 14, 151Google Scholar
vonBremen, H. F., Udwadia, F. E. & Proskurowski, W. 1997, Physica, D 101, 1Google Scholar
Whipple, A. L. 1995, Icarus 115, 347CrossRefGoogle Scholar
Wisdom, J. 1983, Icarus 56, 51CrossRefGoogle Scholar