Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T17:44:39.001Z Has data issue: false hasContentIssue false

On the temporal evolution of the stellar mass function of Galactic clusters

Published online by Cambridge University Press:  18 January 2010

Guido De Marchi
Affiliation:
ESA, Space Science Department, Keplerlaan 1, 2200 AG Noordwijk, the Netherlands email: gdemarchi@rssd.esa.int
Francesco Paresce
Affiliation:
INAF – IASF, Via Gobetti 101, 40129 Bologna, Italy
Simon Portegies Zwart
Affiliation:
Sterrewacht Leiden, Leiden University, Postbus 9513, 2300 RA Leiden, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that we can obtain a good fit to the present-day stellar-mass functions of a large sample of young and old Galactic clusters with a tapered Salpeter power-law distribution function with an exponential truncation of the form dN/dmmα [1 − exp(−m/mc)β]. The average value of the power-law index α is ~−2.2, very close to the Salpeter value of −2.3, while the characteristic mass, mc, is in the range 0.1–0.6M and does not seem to vary in any systematic way with the present cluster parameters such as metal abundance, total cluster mass or central concentration. However, the characteristic mass shows a remarkable correlation with the dynamical age of the cluster, namely mc/M ≃ 0.15 + 0.5 × t3/4dyn, where tdyn is the dynamical time, taken as the ratio of cluster age and dissolution time. The small scatter around this correlation is likely due to uncertainties on the estimated value of tdyn. We attribute the observed trend to the onset of mass segregation through two-body relaxation in a tidal environment, causing preferential loss of low-mass stars from the cluster and hence a drift of the characteristic mass towards higher values. If dynamical evolution is indeed at the origin of the observed trend, it seems plausible that globular clusters, now with mc ≃ 0.35M, were born with a stellar mass function very similar to that measured today in the youngest Galactic clusters and with a value of mc around 0.15 M. This is consistent with the absence of a turn-over in the mass function of the Galactic bulge down to the observational limit at ~0.2M and argues for the universality of the initial mass function of Population I and II stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Allison, R., Goodwin, S. P., Parker, R. J., de Grijs, R., Portegies Zwart, S. F., & Kouwenhoven, M. B. N. 2009, ApJ (Letters), 700, L99CrossRefGoogle Scholar
Ballesteros–Paredes, J., Gómez, G. C., Loinard, L., Torres, R. M., & Pichardo, B. 2009, MNRAS (Letters), 395, L81CrossRefGoogle Scholar
Ballero, S., Matteucci, F., Origlia, L., & Rich, M. 2007, A&A, 467, 123Google Scholar
Barrado, yNavascués, D., Stauffer, J. R., Bouvier, J., Jayawardhana, R., & Cuillandre, J.-C. 2004, ApJ, 610, 1064 (A)Google Scholar
Barrado, yBavascués, D., Stauffer, J. R., & Jayawardhana, R. 2004, ApJ, 614, 386 (B)Google Scholar
Bate, M. 2009, MNRAS, 397, 232CrossRefGoogle Scholar
Baumgardt, H., De Marchi, G., & Kroupa, P. 2008, ApJ, 685, 247CrossRefGoogle Scholar
Baumgardt, H. & Makino, J. 2003, MNRAS, 340, 227CrossRefGoogle Scholar
Bouvier, J., et al. 2008, A&A, 481, 661 (C)Google Scholar
Brown, T., et al. 2009, AJ, 137, 3172CrossRefGoogle Scholar
Caballero, J. 2008, A&A, 478, 667 (D)Google Scholar
Chabrier, G. 2003, PASP, 115, 763CrossRefGoogle Scholar
Chappelle, R., Pinfield, D. J., Steele, I. A., Dobbie, P. D., & Magazzù, A. 2005, MNRAS, 361, 1323 (E)CrossRefGoogle Scholar
De Marchi, G., Paresce, F., & PortegiesZwart, S. 2005, in: Corbelli, E., Palla, F., & Zinnecker, H. (eds.), The Initial Mass Function 50 years later (Dordrecht: Springer), p. 77CrossRefGoogle Scholar
De Marchi, G., Paresce, F., & Pulone, L. 2000, ApJ, 530, 342CrossRefGoogle Scholar
De Marchi, G., Paresce, F., & Pulone, L. 2007, ApJ (Letters), 656, L65 (F)CrossRefGoogle Scholar
De Marchi, G., Pulone, L., & Paresce, F. 2006, A&A, 449, 161CrossRefGoogle Scholar
Elmegreen, B., Klessen, R., & Wilson, C. 2008, ApJ, 681, 365CrossRefGoogle Scholar
Gieles, M., Bastian, N., Lamers, H. J. G. L. M., & Mout, J. N. 2005, A&A, 441, 949Google Scholar
Gilmore, G. 2001, in: Tacconi, L. & Lutz, D. (eds.), Starburst Galaxies (Heidelberg: Springer), p. 34CrossRefGoogle Scholar
Gnedin, O. & Ostriker, J. 1997, ApJ, 474, 223CrossRefGoogle Scholar
Goodwin, S. & Kouwenhoven, M. 2009, MNRAS (Letters), 397, L36CrossRefGoogle Scholar
Kraus, A. & Hillenbrand, L. 2007, AJ, 134, 2340 (G)CrossRefGoogle Scholar
Kroupa, P. 2002, in: Grebel, E. & Brandner, W. (eds.), Modes of Star Formation and the Origin of Field Populations, ASP Conf. Ser. 285, (San Francisco: ASP), p. 86Google Scholar
Luhman, K. 2007, ApJS, 173, 104 (H)CrossRefGoogle Scholar
Luhman, K. & Rieke, G. 1999, ApJ, 525, 440 (I)CrossRefGoogle Scholar
Moraux, E., Bouvier, J., Stauffer, J. R., Barrado y Navascués, D., & Cuillandre, J.-C. 2007, A&A, 471, 499 (J)Google Scholar
Muench, A., Lada, E. A., Lada, C. J., Elston, R. J., Alves, J. F., Horrobin, M., Huard, T. H., Levine, J. L., Raines, S. N., & Román–Zúñiga, C. 2003, AJ, 125, 2029 (K)CrossRefGoogle Scholar
Paresce, F. & De Marchi, G. 2000, ApJ, 534, 870 (L)CrossRefGoogle Scholar
Piskunov, A., Schilbach, E., Kharchenko, N. V., Röser, S., & Scholz, R.-D. 2008, A&A, 477, 165Google Scholar
Portegies Zwart, S., McMillan, S. L. W., Hut, P., & Makino, J. 2001, MNRAS, 321, 199CrossRefGoogle Scholar
Salpeter, E. 1955, ApJ, 121, 161CrossRefGoogle Scholar
Slesnick, C., Hillenbrand, L. A., & Carpenter, J. M. 2004, ApJ, 610, 1045 (M)CrossRefGoogle Scholar
Spitzer, L. 1987, Dynamical evolution of globular clusters, (Princeton: Princeton University Press)Google Scholar
Vesperini, E. & Heggie, D. 1997, MNRAS, 289, 898CrossRefGoogle Scholar
Zoccali, M., Cassisi, S., Frogel, J. A.; Gould, A., Ortolani, S., Renzini, A., Rich, R. M., & Stephens, A. W. 2000, ApJ, 530, 418CrossRefGoogle Scholar