Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T08:41:34.577Z Has data issue: false hasContentIssue false

Orbital stability of planets in binary systems: A new look at old results

Published online by Cambridge University Press:  01 October 2007

J. Eberle
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059, USA email: cuntz@uta.edu, zmusielak@uta.edu
M. Cuntz
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059, USA email: cuntz@uta.edu, zmusielak@uta.edu
Z. E. Musielak
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059, USA email: cuntz@uta.edu, zmusielak@uta.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

About half of all known stellar systems with Sun-like stars consist of two or more stars, significantly affecting the orbital stability of any planet in these systems. This observational evidence has prompted a large array of theoretical research, including the derivation of mathematically stringent criteria for the orbital stability of planets in stellar binary systems, valid for the “coplanar circular restricted three-body problem”. In the following, we use these criteria to explore the validity of results from previous theoretical studies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bonavita, M. & Desidera, S. 2007, A&A, 468, 721Google Scholar
Cuntz, M., Eberle, J., & Musielak, Z.E. 2007, ApJ (Letters), 669, L105CrossRefGoogle Scholar
David, E.-M., Quintana, E. V., Fatuzzo, M., & Adams, F. C. 2003, PASP, 115, 825CrossRefGoogle Scholar
Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485Google Scholar
Eberle, J., Cuntz, M., & Musielak, Z. E. 2008a, in: Meech, K. et al. (eds.), Bioastronomy 2007: Molecules, Microbes and Extraterrestrial Life (San Francisco: ASP), in pressGoogle Scholar
Eberle, J., Cuntz, M., & Musielak, Z. E. 2008b, A&A, submittedGoogle Scholar
Eggenberger, A., & Udry, S. 2007, in: Haghighipour, N. (ed.), Planets in Binary Star Systems (New York: Springer), in pressGoogle Scholar
Eggenberger, A., Udry, S., & Mayor, M. 2004, A&A, 417, 353Google Scholar
Holman, M. J., & Wiegert, P. A. 1999, AJ, 117, 621CrossRefGoogle Scholar
Kley, W. 2001, in: Zinnecker, H. & Mathieu, R.D. (eds.), The Formation of Binary Stars, IAU Symp. 200 (San Francisco: ASP), p. 511CrossRefGoogle Scholar
Lada, C. J. 2006, ApJ (Letters), 640, L63CrossRefGoogle Scholar
Musielak, Z. E., Cuntz, M., Marshall, E. A., & Stuit, T. D. 2005, A&A, 434, 355Google Scholar
Patience, J., et al. 2002, ApJ, 581, 654CrossRefGoogle Scholar
Quintana, E. V., Lissauer, J. J., Chambers, J. E., & Duncan, M. J. 2002, ApJ, 576, 982CrossRefGoogle Scholar
Raghavan, D., et al. 2006, ApJ, 646, 523CrossRefGoogle Scholar
Roy, A. E. 2005, Orbital Motion (Bristol and Philadelphia: Institute of Physics Publ.)Google Scholar
Szebehely, V. 1967, Theory of Orbits (New York and London: Academic Press)Google Scholar
Trilling, D. E., et al. 2007, ApJ, 658, 1289CrossRefGoogle Scholar