Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T09:17:37.408Z Has data issue: false hasContentIssue false

Organics in meteorites - Solar or interstellar?

Published online by Cambridge University Press:  01 February 2008

Conel M. O'D. Alexander
Affiliation:
DTM, Carnegie Institution of Washington, 5241 Broad Branch Road, Washington DC 20015, USA email: alexande@dtm.ciw.edu
George D. Cody
Affiliation:
GL, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington DC 20015, USA email: g.cody@gl.ciw.edu, m.fogel@gl.ciw.edu, hyabuta@gl.ciw.edu
Marilyn Fogel
Affiliation:
GL, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington DC 20015, USA email: g.cody@gl.ciw.edu, m.fogel@gl.ciw.edu, hyabuta@gl.ciw.edu
Hikaru Yabuta
Affiliation:
GL, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington DC 20015, USA email: g.cody@gl.ciw.edu, m.fogel@gl.ciw.edu, hyabuta@gl.ciw.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The insoluble organic material (IOM) in primitive meteorites is related to the organic material in interplanetary dust particles and comets, and is probably related to the refractory organic material in the diffuse interstellar medium. If the IOM is representative of refractory ISM organics, models for how and from what it formed will have to be revised.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Alexander, C. M. O'D. 2005, Meteorit. Planet. Sci., 40, 943CrossRefGoogle Scholar
Alexander, C. M. O'D., Fogel, M., Yabuta, H., & Cody, G. D. 2007, Geochim. Cosmochim. Acta, 71, 4380CrossRefGoogle Scholar
Bernstein, M. P., Moore, M. H., Elsila, J. E., Sandford, S. A., Allamandola, L. J., & Zare, R. N. 2003, ApJ (Letters), 582, L25CrossRefGoogle Scholar
Busemann, H., Young, A. F., Alexander, C. M. O'D., Hoppe, P., Mukhopadhyay, S., & Nittler, L. R. 2006, Science, 314, 727CrossRefGoogle Scholar
Cody, G. D. & Alexander, C. M. O'D. 2005, Geochim. Cosmochim. Acta, 69, 1085CrossRefGoogle Scholar
Cody, G. D., et al. 2008, Meteorit. Planet. Sci., 43, 353CrossRefGoogle Scholar
Garvie, L. A. J. & Buseck, P. R. 2004, Earth Planet. Sci. Lett., 224, 431CrossRefGoogle Scholar
Gourier, D., Robert, F., Delpoux, O., Binet, L., Vezin, H., Moissette, A., & Derenne, S. 2008, Geochim. Cosmochim. Acta, 72, 1914CrossRefGoogle Scholar
Huss, G. R. & Lewis, R. S. 1995, Geochim. Cosmochim. Acta, 59, 115CrossRefGoogle Scholar
Huss, G. R., Lewis, R. S., & Hemkin, S. 1996, Geochim. Cosmochim. Acta, 60, 3311CrossRefGoogle Scholar
Ishii, H. A., et al. 2008, Science, 319, 447CrossRefGoogle Scholar
Joswiak, D. J., Brownlee, D. E., Pepin, R. O., & Schlutter, D. J. 2000, Lunar Planet. Sci., 31, #1500 (abs.)Google Scholar
Kissel, J. & Krueger, F. R. 1987, Nature, 326, 755CrossRefGoogle Scholar
Kwok, S. 2004, Nature, 430, 985CrossRefGoogle Scholar
Nakamura-Messenger, K., Messenger, S., Keller, L. P., Clemett, S. J., & Zolensky, M. E. 2006, Science, 314, 1439CrossRefGoogle Scholar
Pendleton, Y. J. & Allamandola, L. J. 2002, ApJS, 138, 75CrossRefGoogle Scholar
Sandford, S. A., et al. 2006, Science, 314, 1720CrossRefGoogle Scholar
Sephton, M. A., Pillinger, C. T., & Gilmore, I. 2000, Geochim. Cosmochim. Acta, 64, 321CrossRefGoogle Scholar
Thomen, A., Robert, F., & Derenne, S. 2008, Lunar Planet. Sci., 39, #2001 (abs.)Google Scholar