Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T18:05:04.587Z Has data issue: false hasContentIssue false

The origin of mass segregation in NGC 3603

Published online by Cambridge University Press:  18 January 2010

Xiaoying Pang
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstrasse 12–14, 69120 Heidelberg, Germany email: xiaoying@ari.uni-heidelberg.de
Eva K. Grebel
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstrasse 12–14, 69120 Heidelberg, Germany email: xiaoying@ari.uni-heidelberg.de
Martin Altmann
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstrasse 12–14, 69120 Heidelberg, Germany email: xiaoying@ari.uni-heidelberg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

NGC 3603 is one of the most massive, compact young star clusters in the Milky Way. The cluster has an age of only about 1 Myr and is embedded in a giant molecular cloud with ongoing star formation. We have analyzed deep imaging data obtained with the Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope. We have obtained two epochs separated by 10 years, from which we derived proper motions which we used to determine cluster membership. After the removal of field stars, the resulting color–magnitude diagram shows a main sequence in addition to another clear sequence of pre-main-sequence stars. The cluster shows pronounced mass segregation and appears to have a very short crossing timescale. Our photometric, astrometric and kinematic data help us to evaluate the dissolution timescale of NGC 3603 and whether the mass segregation is likely to be primordial or evolutionary.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Allison, R. J., Goodwin, S. P., Parker, R. J., de Grijs, R., Portegies Zwart, S. F., & Kouwenhoven, M. B. N. 2009, ApJ (Letters), 700, 99CrossRefGoogle Scholar
Binney, J. & Tremaine, S. 1987, Galactic Dynamics, Princeton: Princeton University PressGoogle Scholar
Bonnell, I. A. & Davies, M. B. 1998, MNRAS, 295, 691CrossRefGoogle Scholar
Chen, L., de Grijs, R., & Zhao, J. L. 2007, AJ, 134, 1368CrossRefGoogle Scholar
Dolphin, A. E. 2000, PASP, 112, 1383CrossRefGoogle Scholar
Grebel, E. K. 2004, in: Lamers, H. J. G. L. M., Smith, L. J. & Nota, A. (eds.), The Formation and Evolution of Massive Young Star Clusters, ASP Conf. Ser. vol. 322, p. 101, San Francisco: Astron. Soc. Pac.Google Scholar
Grebel, E. K. & Chu, Y.-H. 2000, AJ, 119, 787CrossRefGoogle Scholar
Harayama, Y., Eisenhauer, F., & Martins, F. 2008, ApJ, 675, 1319CrossRefGoogle Scholar
Hillenbrand, L. A. & Hartmann, L. E. 1998, ApJ, 492, 540CrossRefGoogle Scholar
Lejeune, T. & Schaerer, D. 2001, A&A, 366, 538Google Scholar
Moeckel, N. & Bonnell, I. A. 2009, MNRAS, 400, 657CrossRefGoogle Scholar
Nürnberger, D. E. A. & Petr–Gotzens, M. G. 2002, A&A, 382, 537Google Scholar
Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593Google Scholar
Sung, H. & Bessell, M. 2004, ApJ, 127, 1014CrossRefGoogle Scholar
Stolte, A., Brandner, W., Brandl, B., Zinnecker, H., & Grebel, E. K. 2004, ApJ, 128, 765CrossRefGoogle Scholar
Stolte, A., Brandner, W., Brandl, B., & Zinnecker, H. 2006, ApJ, 132, 253CrossRefGoogle Scholar
van den Bergh, S. 1979, A&A, 63, 275Google Scholar