Article contents
The origin of planetary winds
Published online by Cambridge University Press: 16 August 2023
Abstract
Atmospheric escape is a fundamental phenomenon shaping the structure and evolution of planetary atmospheres. Physics of planetary winds range from global processes such as tidal interactions with the host star, through large-scale hydrodynamic outflow, to essentially microphysical kinetic effects, including Jeans-like escape and the interaction of planetary atmospheres with stellar winds and the own magnetic fields of planets. Each of these processes is expected to be most relevant for planets of different properties and at different stages in planetary and stellar evolution. Thus, it is expected that the hydrodynamic outflow guides the evolution of hydrogen-dominated atmospheres of planets having low masses (below that of Neptune) and/or close-in orbits, while the kinetic effects are most important for the long-term evolution of planets with secondary atmospheres, similar to the inner planets in the Solar System. Finally, each of these processes is affected by the interaction with stellar winds.
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 17 , Symposium S370: Winds of Stars and Exoplanets , August 2021 , pp. 103 - 121
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union
References
- 2
- Cited by