Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T08:36:09.231Z Has data issue: false hasContentIssue false

Oscillatory migratory large-scale fields in mean-field and direct simulations

Published online by Cambridge University Press:  26 February 2010

Dhrubaditya Mitra
Affiliation:
Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK emails: dhruba.mitra@gmail.com; r.tavakol@qmul.ac.uk
Reza Tavakol
Affiliation:
Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK emails: dhruba.mitra@gmail.com; r.tavakol@qmul.ac.uk
Axel Brandenburg
Affiliation:
NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden email: brandenb@nordita.org Department of Astronomy, Stockholm University, SE 10691 Stockholm, Sweden
Petri J. Käpylä
Affiliation:
NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden email: brandenb@nordita.org Observatory, Tähtitorninmäki (PO Box 14), FI-00014, University of Helsinki, Finland email: petri.kapyla@helsinki.fi
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We summarise recent results form direct numerical simulations of both non-rotating helically forced and rotating convection driven MHD equations in spherical wedge-shape domains. In the former, using perfect-conductor boundary conditions along the latitudinal boundaries we observe oscillations, polarity reversals and equatorward migration of the large-scale magnetic fields. In the latter we obtain angular velocity with cylindrical contours and large-scale magnetic field which shows oscillations, polarity reversals but poleward migration. The occurrence of these behviours in direct numerical simulations is clearly of interest. However the present models as they stand are not directly applicable to the solar dynamo problem. Nevertheless, they provide general insights into the operation of turbulent dynamos.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Baryshnikova, I. & Shukurov, A. 1987, AN, 308, 89Google Scholar
Brandenburg, A. 2005, ApJ, 625, 539CrossRefGoogle Scholar
Brandenburg, A., Bigazzi, A., & Subramanian, K. 2001, MNRAS, 325, 685CrossRefGoogle Scholar
Brandenburg, A., Candelaresi, S., & Chatterjee, P. 2009, MNRAS, 398, 1414CrossRefGoogle Scholar
Brandenburg, A., Rädler, K.-H., Rheinhardt, M., & Subramanian, K. 2008, ApJ Lett., 687, L49CrossRefGoogle Scholar
Brandenburg, A. & Subramanian, K. 2005, Phys. Rep., 417, 1CrossRefGoogle Scholar
Brown, B. P., Browning, M. K., Miesch, M. S., Brun, A. S., & Toomre, J. 2009, ApJ (submitted), arXiv:0906.2407; see also, Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S. et al. 2007, AIPC, 948, 271; Browning, M. K., Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ, 648, L157; Brun, A. S., Miesch, M. S., & Toomre, J. 2004, ApJ, 614, 1073Google Scholar
Charbonneau, P. 2005, Living Reviews in Solar Physics, 2CrossRefGoogle Scholar
Chatterjee, P., Nandy, D., & Choudhuri, A. 2004, A&A, 427, 1019Google Scholar
Covas, E., Tavakol, R., Moss, D., & Tworkowski, A. 2000, A&A, 360, L21Google Scholar
Covas, E., Tavakol, R., & Moss, D. 2000, A&A, 363, L13Google Scholar
Covas, E., Moss, D., & Tavakol, R. 2004, A&A, 416, 775Google Scholar
Covas, E., Moss, D., & Tavakol, R. 2005 A&A, 429, 657Google Scholar
Choudhuri, A. 1998, The physics of Fluids and Plasmas: An introduction for Astrophysicists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
Choudhuri, A. R., Schussler, M., & Dikpati, M. 1995, A&A, 303, L29+Google Scholar
Gilman, P. A. 1983, ApJS, 53, 243CrossRefGoogle Scholar
Glatzmaier, G. A. 1985, ApJ, 291, 300CrossRefGoogle Scholar
Jouve, L., Brun, A. S., Arlt, R., Brandenburg, A., Dikpati, M., Bonanno, A., Käpylä, P. J., Moss, D., Rempel, M., Gilman, P., Korpi, M. J., & Kosovichev, A. G. 2008, A&A, 483, 949Google Scholar
Käpylä, P. J., Korpi, M. J., Brandenburg, A., Mitra, D., & Tavakol, R. 2009, arXiv:0909.1330Google Scholar
Krause, F. & Rädler, K.-H. 1980, Mean-field magnetohydrodynamics and dynamo theory. Pergamon Press, OxfordGoogle Scholar
Mitra, D., Tavakol, R., Käpylä, P. J., & Brandenburg, A. 2009, arXiv:0901.2364Google Scholar
Moffatt, K. 1978, Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge.Google Scholar
Ossendrijver, M. 2003, Astron. Astrophys. Rev, 11, 287367 (2003).CrossRefGoogle Scholar
Parker, E. 1955, ApJ, 1122, 293CrossRefGoogle Scholar
Parker, E. 1987, Sol. Phys., 110, 11CrossRefGoogle Scholar
Rädler, K.-H. & Bräeuer, H.-J. 1987, AN, 308, 101Google Scholar
Rüdiger, G. & Hollerbach, R. 2004, in Rüdiger, G., Hollerbach, R., eds, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory. Wiley-VCH, p. 343CrossRefGoogle Scholar
Stefani, F. & Gerbeth, G. 2005, Phys. Rev. Lett, 94, 184506CrossRefGoogle Scholar
Yoshimura, H. 1975, ApJ. 201, 740.CrossRefGoogle Scholar