Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T07:25:26.142Z Has data issue: false hasContentIssue false

Populations of Be stars: stellar evolution of extreme stars

Published online by Cambridge University Press:  12 July 2011

Christophe Martayan
Affiliation:
ESOChile; email: cmartaya@eso.org GEPI-Observatoire de Meudon, France
Thomas Rivinius
Affiliation:
ESOChile; email: cmartaya@eso.org
Dietrich Baade
Affiliation:
ESOGermany
Anne-Marie Hubert
Affiliation:
GEPI-Observatoire de Meudon, France
Jean Zorec
Affiliation:
Institut d'Astrophysique de Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Among the emission-line stars, the classical Be stars known for their extreme properties are remarkable. The Be stars are B-type main sequence stars that have displayed at least once in their life emission lines in their spectrum. Beyond this phenomenological approach some progresses were made on the understanding of this class of stars. With high-technology techniques (interferometry, adaptive optics, multi-objects spectroscopy, spectropolarimetry, high-resolution photometry, etc) from different instruments and space mission such as the VLTI, CHARA, FLAMES, ESPADONS-NARVAL, COROT, MOST, SPITZER, etc, some discoveries were performed allowing to constrain the modeling of the Be stars stellar evolution but also their circumstellar decretion disks. In particular, the confrontation between theory and observations about the effects of the stellar formation and evolution on the main sequence, the metallicity, the magnetic fields, the stellar pulsations, the rotational velocity, and the binarity (including the X-rays binaries) on the Be phenomenon appearance is discussed. The disks observations and the efforts made on their modeling is mentioned. As the life of a star does not finish at the end of the main sequence, we also mention their stellar evolution post main sequence including the gamma-ray bursts. Finally, the different new results and remaining questions about the main physical properties of the Be stars are summarized and possible ways of investigations proposed. The recent and future facilities (XSHOOTER, ALMA, E-ELT, TMT, GMT, JWST, GAIA, etc) and their instruments that may help to improve the knowledge of Be stars are also briefly introduced.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Baade, D., Meisenheimer, K., Iwert, O., Alonso, J. et al. 1999, The Messenger, 95, 15Google Scholar
Ballereau, D., Chauville, J., & Zorec, J. 1995, A&AS, 111, 457Google Scholar
Bonanos, A. Z., Lennon, D. J., Köhlinger, F., van Loon, J. T. et al. 2010, AJ, 140, 416CrossRefGoogle Scholar
Bouret, J.-C., Lanz, T., Hillier, D. J., Heap, S. R. et al. 2003, ApJ, 595, 1182CrossRefGoogle Scholar
Bresolin, F., Urbaneja, M. A., Gieren, W., Pietrzyński, G. et al. 2007, ApJ, 671, 2028CrossRefGoogle Scholar
Carciofi, A. C., Okazaki, A. T., Le Bouquin, J.-B., Štefl, S. et al. 2009, A&A, 504, 915Google Scholar
Coe, M. J., Schurch, M., Corbet, R. H. D., Galache, J. et al. 2008, MNRAS, 387, 724CrossRefGoogle Scholar
Collins, G. W. II 1987, in: Slettebak, A. & Snow, T. P. (eds.), Physics of Be Stars, IAU Colloquium 92, p. 3Google Scholar
Cranmer, S. R. 2009, ApJ, 701, 396CrossRefGoogle Scholar
Dachs, J., Kiehling, R. & Engels, D. 1988, A&A, 194, 167Google Scholar
Domiciano de Souza, A., Kervella, P., Jankov, S., Abe, L. et al. 2003, A&A, 407, L47Google Scholar
Ekström, S., Meynet, G., Maeder, A., & Barblan, F. 2008, A&A, 478, 467Google Scholar
Evans, C. J., Smartt, S. J., Lee, J.-K., Lennon, D. J. et al. 2005, A&A, 437, 467Google Scholar
Frémat, Y., Zorec, J., Hubert, A.-M., & Floquet, M. 2005, A&A, 440, 305Google Scholar
Huat, A.-L., Hubert, A.-M., Baudin, F., Floquet, M. et al. 2009, A&A, 506, 95Google Scholar
Hunter, I., Lennon, D. J., Dufton, P. L., Trundle, C. et al. 2008, A&A, 479, 541Google Scholar
Ita, Y., Matsuura, M., Ishihara, D., Oyabu, S. et al. 2010, A&A, 514A, 2Google Scholar
Keller, S. C., Wood, P. R. & Bessell, M. S. 1999, A&AS, 134, 489Google Scholar
Keller, S. C. 2004, PASA, 21, 310CrossRefGoogle Scholar
Kervella, P. & Domiciano de Souza, A. 2006, A&A, 453, 1059Google Scholar
Lennon, D. J., Lee, J.-K., Dufton, P. L., & Ryans, R. S. I. 2005, A&A, 438, 265Google Scholar
Maeder, A. 1987, A&A, 173, 247Google Scholar
Maeder, A., Grebel, E. K. & Mermilliod, J.-C. 1999, A&A, 346, 459Google Scholar
Maeder, A. & Meynet, G. 2001, A&A, 373, 555Google Scholar
Martayan, C., Frémat, Y., Hubert, A.-M., Floquet, M. et al. 2006, A&A, 452, 273Google Scholar
Martayan, C., Frémat, Y., Hubert, A.-M., Floquet, M. et al. 2007, A&A, 462, 683Google Scholar
Martayan, C., Floquet, M., Hubert, A. M., Neiner, C. et al. 2008, A&A, 489, 459Google Scholar
Martayan, C., Baade, D. & Fabregat, J. 2010a, A&A, 509A, 11Google Scholar
Martayan, C., Zorec, J., Frémat, Y. & Ekström, S. 2010b, A&A, 516A, 103Google Scholar
Martins, F. 2011, Bulletin de la Societe Royale des Sciences de Liege 80, 29Google Scholar
Mathew, B., Subramaniam, A. & Bhatt, B. C. 2008, MNRAS, 388, 1879CrossRefGoogle Scholar
McSwain, M. V. & Gies, D. R. 2005, ApJS, 161, 118CrossRefGoogle Scholar
McSwain, M. V., Huang, W., Gies, D. R., Grundstrom, E. D. et al. 2008, ApJ, 672, 590CrossRefGoogle Scholar
Meilland, A., Stee, P., Vannier, M., Millour, F. et al. 2007, A&A, 464, 59Google Scholar
Mennickent, R. E., Pietrzyński, G., Gieren, W., & Szewczyk, O. 2002, A&A, 393, 887Google Scholar
Meyssonnier, N. & Azzopardi, M. 1993, A&AS, 102, 451Google Scholar
Mokiem, M. R., de Koter, A., Evans, C. J., Puls, J. et al. 2006, A&A, 456, 1131Google Scholar
Neiner, C., Hubert, A.-M., Frémat, Y., Floquet, M. et al. 2003, A&A, 409, 275Google Scholar
Neiner, C., de Batz, B., Mekkas, A., Cochard, F., & Martayan, C. 2007, in: Bouvier, J., Chalabaev, A., & Charbonnel, C. (eds.), SF2A-2007: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, p. 538Google Scholar
Oudmaijer, R. D. & Parr, A. M. 2010, MNRAS, 405, 2439Google Scholar
Porter, J. M. 1999, A&A, 341, 560Google Scholar
Porter, J. M. & Rivinius, T. 2003, PASP, 115, 1153CrossRefGoogle Scholar
Rivinius, T., Baade, D., Stefl, S., Stahl, O. et al. 1998a, A&A, 333, 125Google Scholar
Rivinius, T., Baade, D., Stefl, S., Stahl, O. et al. 1998b, A&A, 336, 177Google Scholar
Sabogal, B. E., Mennickent, R. E., Pietrzyński, G., & Gieren, W. 2005, MNRAS, 361, 1055CrossRefGoogle Scholar
Sana, H., Gosset, E. & Evans, C. J. 2009, MNRAS, 400, 1479CrossRefGoogle Scholar
Secchi, A. 1867, Astronomical register, 5, 40Google Scholar
Smith, M. A., Henry, G. W., & Vishniac, E. 2006, ApJ, 647, 1375CrossRefGoogle Scholar
Štefl, S., Rivinius, T., Carciofi, A. C., Le Bouquin, J.-B. et al. 2009, A&A, 504, 929Google Scholar
Struve, O. 1931, ApJ, 73, 94CrossRefGoogle Scholar
Townsend, R. H. D., Owocki, S. P. & Howarth, I. D. 2004, MNRAS, 350, 189CrossRefGoogle Scholar
Tutukov, A. V. & Fedorova, A. V. 2007, Astron. Rep., 51, 847CrossRefGoogle Scholar
Vink, J. S. 2007, in: Stancliffe, R. J., Houdek, G., Martin, R. G., & Tout, C. A. (eds.), Unsolved Problems in Stellar Physics: A Conference in Honor of Douglas Gough, AIP-CP 948, p. 389Google Scholar
Wisniewski, J. P. & Bjorkman, K. S. 2006, ApJ, 652, 458CrossRefGoogle Scholar
Wisniewski, J. P., Bjorkman, K. S., Magalhães, A. M., Bjorkman, J. E. et al. 2007, ApJ, 671, 2040CrossRefGoogle Scholar
Wisniewski, J. P., Clampin, M., Grady, C. A., Ardila, D. R. et al. 2008, ApJ, 682, 548CrossRefGoogle Scholar
Yoon, S.-C., Langer, N., & Norman, C. 2006, A&A, 460, 199Google Scholar
Zorec, J., Frémat, Y., & Cidale, L. 2005, A&A, 441, 235Google Scholar
Zorec, J., Cidale, L., Arias, M. L., Frémat, Y. et al. 2009, A&A, 501, 297Google Scholar