Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T08:32:26.586Z Has data issue: false hasContentIssue false

Powerful explosions at Z = 0?

Published online by Cambridge University Press:  01 June 2008

Sylvia Ekström
Affiliation:
Geneva Observatory, University of Geneva, Maillettes 51 - CH 1290 Sauverny, Switzerland
Georges Meynet
Affiliation:
Geneva Observatory, University of Geneva, Maillettes 51 - CH 1290 Sauverny, Switzerland
Raphael Hirschi
Affiliation:
University of Keele, Keele, ST5 5BG, UK
André Maeder
Affiliation:
Geneva Observatory, University of Geneva, Maillettes 51 - CH 1290 Sauverny, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Metal-free stars are assumed to evolve at constant mass because of the very low stellar winds. This leads to large CO-core mass at the end of the evolution, so primordial stars with an initial mass between 25 and 85 M are expected to end as direct black holes, the explosion energy being too weak to remove the full envelope.

We show that when rotation enters into play, some mass is lost because the stars are prone to reach the critical velocity during the main sequence evolution. Contrary to what happens in the case of very low- but non zero-metallicity stars, the enrichment of the envelope by rotational mixing is very small and the total mass lost remains modest. The compactness of the primordial stars lead to a very inefficient transport of the angular momentum inside the star, so the profile of Ω(r) is close to Ωr2 = const. As the core contracts, the rotation rate increases, and the star ends its life with a fast spinning core. Such a configuration has been shown to modify substantially the dynamics of the explosion. Where one expected a weak explosion or none at all, rotation might boost the explosion energy and drive a robust supernova. This will have important consequences in the way primordial stars enriched the early Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Abel, T., Bryan, G. L., and Norman, M. L. 2002, Science 295, 93CrossRefGoogle Scholar
Bromm, V., Coppi, P. S., and Larson, R. B. 2002, ApJ 564, 23CrossRefGoogle Scholar
Burrows, A., Walder, R., Ott, C. D., and Livne, E. 2005, Nucl. Phys. A 752, 570CrossRefGoogle Scholar
Ekström, S., Meynet, G., Chiappini, C., Hirschi, R., and Maeder, A. 2008a, A&A (in press), arXiv:0807.0573Google Scholar
Ekström, S., Meynet, G., and Maeder, A. 2008b, in IAU Symposium, Vol. 250 of IAU Symposium, pp 209–216CrossRefGoogle Scholar
Greif, T. H. and Bromm, V. 2006, MNRAS 373, 128CrossRefGoogle Scholar
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., and Hartmann, D. H. 2003, ApJ 591, 288CrossRefGoogle Scholar
Kotake, K., Yamada, S., Sato, K., and Shimizu, T. M. 2003, Nucl. Phys. A 718, 629CrossRefGoogle Scholar
Kudritzki, R. P. 2002, ApJ 577, 389CrossRefGoogle Scholar
Kudritzki, R.-P. and Puls, J. 2000, ARAA 38, 613CrossRefGoogle Scholar
Marigo, P., Girardi, L., Chiosi, C., and Wood, P. R. 2001, A&A 371, 152Google Scholar
Meynet, G., Ekström, S., and Maeder, A. 2006, A&A 447, 623Google Scholar
Mokiem, M. R., de Koter, A., Vink, J. S., Puls, J., Evans, C. J., Smartt, S. J., Crowther, P. A., Herrero, A., Langer, N., Lennon, D. J., Najarro, F., and Villamariz, M. R. 2007, A&A 473, 603Google Scholar
Nomoto, K., Umeda, H., Maeda, K., Ohkubo, T., Deng, J., and Mazzali, P. A. 2003, Nucl. Phys. A 718, 277CrossRefGoogle Scholar
Nugis, T. and Lamers, H. J. G. L. M. 2000, A&A 360, 227Google Scholar
Omukai, K. and Yoshii, Y. 2003, ApJ 599, 746CrossRefGoogle Scholar
O'Shea, B. W., Abel, T., Whalen, D., and Norman, M. L. 2005, ApJ 628, L5CrossRefGoogle Scholar
Owocki, S. 2005, in Ignace, R. and Gayley, K. G. (eds.), The Nature and Evolution of Disks Around Hot Stars, Vol. 337 of ASPC, p. 101Google Scholar
Shimizu, T. M., Ebisuzaki, T., Sato, K., and Yamada, S. 2001, ApJ 552, 756CrossRefGoogle Scholar
Smith, N. and Owocki, S. P. 2006, ApJ 645, L45CrossRefGoogle Scholar
Vink, J. S. and de Koter, A. 2005, A&A 442, 587Google Scholar
Vink, J. S., de Koter, A., and Lamers, H. J. G. L. M. 2001, A&A 369, 574Google Scholar
Yamasaki, T. and Yamada, S. 2005, ApJ 623, 1000CrossRefGoogle Scholar