Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T22:39:09.188Z Has data issue: false hasContentIssue false

Powering and Shaping Planetary Nebulae: The Physics of Common Envelopes

Published online by Cambridge University Press:  11 May 2017

Jason Nordhaus
Affiliation:
Dept. of Science and Mathematics, National Technical Institute for the Deaf Rochester Institute of Technology, Rochester, NY 14623, USA Center for Computational Relativity and Gravitation Rochester Institute of Technology, Rochester, NY 14623, USA email: nordhaus@astro.rit.edu
David S. Spiegel
Affiliation:
Algorithms Department, Stitch Fix San Francisco, CA 94103, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The diversity of collimated outflows in post-asymptotic-giant-branch stars and their planetary nebula progeny are often explained by a combination of close binary interactions and accretion. The viability of such scenarios can be tested by comparing kinematic outflow data to determine minimum accretion rates necessary to power observed outflows. While many binary channels have been ruled out with this technique, common envelope interactions can accommodate the current observational constraints, are potentially common, lead to a diverse array of planetary-nebula shapes, and naturally produce period gaps for companions to white dwarfs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Balick, B. & Frank, A. 2002, Ann. Rev. Ast. Astron. Astrophys., 40, 439 CrossRefGoogle Scholar
Blackman, E. G. & Lucchini, S. 2014, Mon. Not. R. Astron. Soc., 440, L16 CrossRefGoogle Scholar
Bujarrabal, V., Castro-Carrizo, A., Alcolea, J., & Sánchez Contreras, C. 2001, Astron. Astrophys., 377, 868 CrossRefGoogle Scholar
De Marco, O. 2009, Pub. Astro. Soc. Pacific, 121, 316 CrossRefGoogle Scholar
Huggins, P. J. 2012, IAU Symposium, 283, 188 Google Scholar
Nordhaus, J. & Blackman, E. G. 2006, Mon. Not. R. Astron. Soc., 370, 2004 CrossRefGoogle Scholar
Nordhaus, J., Blackman, E. G., & Frank, A. 2007, Mon. Not. R. Astron. Soc., 376, 599 CrossRefGoogle Scholar
Nordhaus, J., Spiegel, D. S., Ibgui, L., Goodman, J., & Burrows, A. 2010, Mon. Not. R. Astron. Soc., 408, 631 CrossRefGoogle Scholar
Nordhaus, J., Wellons, S., Spiegel, D. S., Metzger, B. D., & Blackman, E. G. 2011, Proceedings of the National Academy of Science, 108, 3135 CrossRefGoogle Scholar
Nordhaus, J. & Spiegel, D. S. 2013, Mon. Not. R. Astron. Soc., 432, 500 CrossRefGoogle Scholar
Paczynski, B. 1976, Structure and Evolution of Close Binary Systems, 73, 75 CrossRefGoogle Scholar
Spiegel, D. S. 2012, arXiv:1208.2276 Google Scholar
Zijlstra, A. A. 2015, Revista Mexicana de Astronomía y Astrofísica, 51, 221 Google Scholar