Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-30T21:23:10.587Z Has data issue: false hasContentIssue false

Predicting a Solar Cycle Before its Onset Using a Flux Transport Dynamo Model

Published online by Cambridge University Press:  24 July 2018

Arnab Rai Choudhuri*
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore – 560012, India email: arnab@iisc.ac.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We begin with a review of the predictions for cycle 24 before its onset. After summarizing the basics of the flux transport dynamo model, we discuss how this model had been used to make a successful prediction of cycle 24, on the assumption that the irregularities of the solar cycle arise due to the fluctuations in the Babcock–Leighton mechanism. We point out that fluctuations in the meridional circulation can be another cause of irregularities in the cycle.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Babcock, H. W. 1961, ApJ, 133, 572Google Scholar
Charbonneau, 2014, ARAA, 52, 251CrossRefGoogle Scholar
Chatterjee, P. & Choudhuri, A. R. 2006, Solar Phys., 239, 29Google Scholar
Chatterjee, P., Nandy, D. & Choudhuri, A. R. 2004, A&A, 427, 1019Google Scholar
Choudhuri, A. R. 1992, A&A, 253, 277Google Scholar
Choudhuri, A. R. 2011, Pramana, 77, 77CrossRefGoogle Scholar
Choudhuri, A. R. 2014, Indian J. Phys., 88, 877CrossRefGoogle Scholar
Choudhuri, A. R. 2017, Science China Phys. Mech. Astron., 60, 019601Google Scholar
Choudhuri, A. R., Chatterjee, P. & Jiang, J. 2007, Phys. Rev. Lett., 98, 131103CrossRefGoogle Scholar
Choudhuri, A. R. & Karak, B. B. 2009, Res. Asron. Astrophys., 9, 953Google Scholar
Choudhuri, A. R. & Karak, B. B. 2012, Phys. Rev. Lett., 109, 171103CrossRefGoogle Scholar
Choudhuri, A. R., Schüssler, M. & Dikpati, M. 1995, A&A, 303, L29Google Scholar
D’Silva, S. & Choudhuri, A. R. 1993, A&A, 272, 621Google Scholar
Dikpati, M. & Charbonneau, P. 1999, ApJ, 518, 508CrossRefGoogle Scholar
Dikpati, M., de Toma, G. & Gilman, P. A. 2006, Geophys. Res. Lett., 33, 5102CrossRefGoogle Scholar
Durney, B. R. 1995, Solar Phys., 160, 213Google Scholar
Goel, A. & Choudhuri, A. R. 2009, Res. Asron. Astrophys., 9, 115Google Scholar
Hazra, G. & Choudhuri, A. R. 2017, MNRAS, pressGoogle Scholar
Hazra, G., Choudhuri, A. R. & Miesch, M. S. 2017, ApJ, 835, 39Google Scholar
Hazra, G., Karak, B. B. & Choudhuri, A. R. 2014, ApJ, 782, 93CrossRefGoogle Scholar
Hotta, H. & Yokoyama, T. 2010, ApJ, 714, L308CrossRefGoogle Scholar
Jiang, J., Chatterjee, P. & Choudhuri, A. R. 2007, MNRAS, 381, 1527Google Scholar
Karak, B. B. 2010, ApJ, 724, 1021CrossRefGoogle Scholar
Karak, B. B. & Choudhuri, A. R. 2011, MNRAS, 410, 1503Google Scholar
Karak, B. B. & Choudhuri, A. R. 2013, Res. Asron. Astrophys., 13, 1339CrossRefGoogle Scholar
Karak, B. B., Jiang, J., Miesch, M. S., Charbonneau, P. & Choudhuri, A. R. 2014a, Space Sc. Revs, 186, 561Google Scholar
Karak, B. B., Kitchatinov, L. L. & Choudhuri, A. R. 2014b, ApJ, 791, 59CrossRefGoogle Scholar
Leighton, R. B. 1969, ApJ, 156, 1CrossRefGoogle Scholar
Longcope, D. & Choudhuri, A. R. 2002, Solar Phys., 205, 63CrossRefGoogle Scholar
Nandy, D. & Choudhuri, A. R. 2002, Science, 296, 1671Google Scholar
Parker, E. N. 1955, ApJ, 122, 293Google Scholar
Pesnell, W. D. 2008, Solar Phys., 252, 209CrossRefGoogle Scholar
Schatten, K. 2005, Geophys. Res. Lett., 32, L21106CrossRefGoogle Scholar
Stenflo, J. O. & Kosovichev, A. G. 2012, ApJ, 745, 129Google Scholar
Svalgaard, L., Cliver, E. W. & Kamide, Y. 2005, Geophys. Res. Lett., 32, L01104CrossRefGoogle Scholar
Wang, Y.-M., Sheeley, N. R. & Nash, A. G. 1991, ApJ, 383, 431Google Scholar
Yeates, A. R., Nandy, D. & Mackay, D. H. 2008, ApJ, 673, 544CrossRefGoogle Scholar
Yoshimura, H. 1975, ApJ, 201, 740Google Scholar