Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T19:26:45.815Z Has data issue: false hasContentIssue false

Probing neutron star interiors with pulsar glitches

Published online by Cambridge University Press:  04 June 2018

Brynmor Haskell*
Affiliation:
Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences Ulica Bartycka 18, 00-716 Warszawa, Poland email: bhaskell@camk.edu.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pulsar glitches are thought to be probes of the superfluid interior of neutron stars. These sudden jumps in frequency observed in many pulsars are generally assumed to be the macroscopic manifestation of superfluid vortex motion on a microscopic scale. Resolving and modelling such phenomena on the scale of a neutron star is, however, a challenging problem which still remains open, fifty years after the discovery of pulsars. In this article I will review recent theoretical progress, both on the microscopic level and on the macroscopic level, and discuss which constraints on the models can be provided by observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, ApJ, 848, L12Google Scholar
Alpar, M. A., 1977, ApJ, 213, 527Google Scholar
Alpar, M. A., Pines, D., Anderson, P. W., & Shaham, J., 1984, ApJ, 276, 325Google Scholar
Anderson, P. W., Alpar, M. A., Pines, D., & Shaham, J., 1982, Philosophical Magazine, Part A, 45, 227Google Scholar
Anderson, P. W., & Itoh, N., 1975, Nature, 256, 25CrossRefGoogle Scholar
Andersson, N., Glampedakis, K., Ho, W. C. G., & Espinoza, C. M., 2012, Physical Review Letters, 109, 241103Google Scholar
Antonopoulou, D., Espinoza, C. M., Kuiper, L., & Andersson, N. 2017, ArXiv e-prints, arXiv:1708.09459Google Scholar
Baym, G., Pethick, C., & Pines, D., 1969, Nature, 224, 673Google Scholar
Boynton, P. E., Groth, E. J. III, Partridge, R. B., & Wilkinson, D. T. 1969, IAU Circ., 2179Google Scholar
Chamel, N., 2012, Phys. Rev. C, 85, 035801Google Scholar
Chamel, N., 2013, Physical Review Letters, 110, 011101Google Scholar
Cheng, K. S., Pines, D., Alpar, M. A., & Shaham, J., 1988, ApJ, 330, 835Google Scholar
Epstein, R. I., & Baym, G., 1988, ApJ, 328, 680Google Scholar
Espinoza, C. M., Antonopoulou, D., Stappers, B. W., Watts, A., & Lyne, A. G., 2014, MNRAS, 440, 2755Google Scholar
Espinoza, C. M., Lyne, A. G., Stappers, B. W., & Kramer, M., 2011, MNRAS, 414, 1679Google Scholar
Fuentes, J. R., Espinoza, C. M., Reisenegger, A., et al. 2017, ArXiv e-prints, arXiv:1710.00952Google Scholar
Fulgenzi, W., Melatos, A., & Hughes, B. D., 2017, MNRAS, 470, 4307Google Scholar
Glampedakis, K., & Andersson, N., 2009, Physical Review Letters, 102, 141101CrossRefGoogle Scholar
Haskell, B., 2016, MNRAS, 461, L77Google Scholar
Haskell, B., & Antonopoulou, D., 2014, MNRAS, 438, L16Google Scholar
Haskell, B., & Melatos, A., 2015, International Journal of Modern Physics D, 24, 1530008Google Scholar
Haskell, B., & Melatos, A., 2016, MNRAS, 461, 2200Google Scholar
Haskell, B., Pizzochero, P. M., & Sidery, T., 2012, MNRAS, 420, 658Google Scholar
Haskell, B. & Sedrakian, A. 2017, ArXiv e-prints, arXiv:1709.10340Google Scholar
Ho, W. C. G., Espinoza, C. M., Antonopoulou, D., & Andersson, N., 2015, Science Advances, 1, e1500578Google Scholar
Melatos, A., Peralta, C., & Wyithe, J. S. B., 2008, ApJ, 672, 1103Google Scholar
Middleditch, J., Marshall, F. E., Wang, Q. D., Gotthelf, E. V., & Zhang, W., 2006, ApJ, 652, 1531Google Scholar
Mongiovì, M. S., Russo, F. G., & Sciacca, M., 2017, MNRAS, 469, 2141Google Scholar
Newton, W. G., Berger, S., & Haskell, B., 2015, MNRAS, 454, 4400Google Scholar
Pizzochero, P. M., 2011, ApJ, 743, L20Google Scholar
Pizzochero, P. M., Antonelli, M., Haskell, B., & Seveso, S., 2017, Nature Astronomy, 1, 0134Google Scholar
Radhakrishnan, V., & Manchester, R. N., 1969, Nature, 222, 228Google Scholar
Reichley, P. E., & Downs, G. S., 1969, Nature, 222, 229Google Scholar
Richards, D. W., Pettengill, G. H., Roberts, J. A., Counselman, C. C., & Rankin, J. 1969, IAU Circ., 2181Google Scholar
Ruderman, M., 1969, Nature, 223, 597Google Scholar
Seveso, S., Pizzochero, P. M., Grill, F., & Haskell, B., 2016, MNRAS, 455, 3952Google Scholar
Seveso, S., Pizzochero, P. M., & Haskell, B., 2012, MNRAS, 427, 1089Google Scholar
Warszawski, L., & Melatos, A., 2011, MNRAS, 415, 1611Google Scholar
Warszawski, L., & Melatos, A., 2013, MNRAS, 428, 1911Google Scholar
Watanabe, G. & Pethick, C. J. 2017, ArXiv e-prints, arXiv:1704.08859Google Scholar
Wlazłowski, G., Sekizawa, K., Magierski, P., Bulgac, A., & Forbes, M. M., 2016, Physical Review Letters, 117, 232701Google Scholar