Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T13:07:19.883Z Has data issue: false hasContentIssue false

Probing the heliosphere with the directional anisotropy of galactic cosmic-ray intensity

Published online by Cambridge University Press:  05 July 2012

Kazuoki Munakata*
Affiliation:
Physics Department, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan email: kmuna00@shinshu-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Because of the large detector volume that can be deployed, ground-based detectors remain state-of-the-art instrumentation for measuring high-energy galactic cosmic-rays (GCRs). This paper demonstrates how useful information can be derived from observations of the directional anisotropy of the high-energy GCR intensity, introducing the most recent results obtained from the ground-based observations. The anisotropy observed with the global muon detector network (GMDN) provides us with a unique information of the spatial gradient of the GCR density which reflects the large-scale magnetic structure in the heliosphere. The solar cycle variation of the gradient gives an important information on the GCR transport in the heliosphere, while the short-term variation of the gradient enables us to deduce the large-scale geometry of the magnetic flux rope and the interplanetary coronal mass ejection (ICME). Real-time monitoring of the precursory anisotropy which has often been observed at the Earth preceding the arrival of the ICME accompanied by a strong shock may provide us with useful tools for forecasting the space weather with a long lead time. The solar cycle variation of the Sun's shadow observed in the TeV GCR intensity is also useful for probing the large-scale magnetic structure of the solar corona.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Amenomori, M., Bi, X. J., Chen, D., Cui, S. W., & Danzengluobu, , Ding, L. K. et al. , 2009, ApJ, 692, 61CrossRefGoogle Scholar
Amenomori, M., Bi, X. J., Chen, D., Chen, W. Y., & Cui, S. W., Danzengluobu, et al. , 2011, Proc. of the 32nd Internat. Cosmic Ray Conf. (Beijing), 11, 242Google Scholar
Barnden, L. R. 1971, Solar Phys., 18, 165CrossRefGoogle Scholar
Belov, A. V., Bieber, J. B., Eroshenko, E. A., Evenson, P., Pyle, R., & Yanke, V. G. et al. , 2001, Proc. of the 27th Internat. Cosmic Ray Conf. (Hamburg) (Schaltungsdienst Lange o.H.G., Berlin), 9, 3507Google Scholar
Cane, H. V. 1993, J. Geophys. Res., 98, 3509CrossRefGoogle Scholar
Cane, H. V., Richardson, I. G., von Rosenvinge, T. T., & Wibberenz, G. 1994, J. Geophys. Res., 99, 21429CrossRefGoogle Scholar
Cane, H. V., Richardson, I. G., & von Rosenvinge, T. T. 1996, J. Geophys. Res., 101, 21561CrossRefGoogle Scholar
Dorman, L. I., Iucci, N., & Villoresi, G. 1995 Proc. of the 24th Internat. Cosmic Ray Conf. (Rome), 4, 892Google Scholar
Duggal, S. P. & Pomerantz, M. A. 1976, J. Geophys. Res., 81, 5032CrossRefGoogle Scholar
Fjimoto, K., Inoue, A., Murakami, K., & Nagashima, K. 1984, Report of Cosmic-Ray Research Lab., No.9, Nagoya UniversityGoogle Scholar
Fushishita, A., Kuwabara, T., Kato, C., Yasue, S., Bieber, J. W., & Evenson, P. et al. , 2010, ApJ, 715, 1239CrossRefGoogle Scholar
Kóta, J. & Jokipii, J. R. 1983, ApJ, 265, 573CrossRefGoogle Scholar
Kozai, M., Munakata, K., Kato, C., Yasue, S., Kuwabara, T., & Bieber, J. W. et al. , 2011, Proc. of the 32nd Internat. Cosmic Ray Conf. (Beijing), 11, 301Google Scholar
Kuwabara, T., Munakata, K., Yasue, S., Kato, C., Akahane, S., & Koyama, M. et al. , 2004, Geophys. Res. Lett., 31, L19803–1CrossRefGoogle Scholar
Kuwabara, T., Bieber, J. W., Evenson, P., Munakata, K., Yasue, S., & Kato, C. et al. , 2009, J. Geophys. Res., 114, A05109–1Google Scholar
Leerungnavarat, K., Ruffolo, D., & Bieber, J. W. 2003, ApJ, 593, 587CrossRefGoogle Scholar
Liu, Y., Luhmann, J. G., Müller-Mellin, R., Schroeder, P. C., Wang, L., & Lin, R. P. et al. , 2008, ApJ, 689, 563CrossRefGoogle Scholar
Lookwood, J. A. 1971, Space Sci. Revs, 12, 658Google Scholar
Munakata, K., Bieber, J. W., Yasue, S., Kato, C., Koyama, M., & Akahane, S. et al. , 2000, J. Geophys. Res., 105, 27457CrossRefGoogle Scholar
Munakata, K., Yasue, S., Kato, C., Kóta, J., Tokumaru, M., & Kojima, M. et al. , 2006, Adv. Geosci., 2, 115Google Scholar
Nagashima, K., Fujimoto, K., Sakakibara, S., Morishita, I., & Tatsuoka, R. 1992, Planet. Space Sci., 40, 1109CrossRefGoogle Scholar
Okazaki, Y., Fushishita, A., Narumi, T., Kato, C., Yasue, S., & Kuwabara, T. et al. , 2008, ApJ, 681, 693CrossRefGoogle Scholar
Rockenbach, M., Dal Lago, A., Gonzalez, W. D., Munakata, K., Kato, C., & Kuwabara, T. et al. , 2011, Geophys. Res. Lett., 38, L16108–1CrossRefGoogle Scholar
Simpson, J. A., Fonger, W., & Treiman, S. B. 1953, Phys. Rev., 90, 934CrossRefGoogle Scholar
Wilcox Solar Observatory 2010, WSO Computed “Tilt Angle” of the Heliospheric Current Sheet, http://wso.stanford.edu/Tilts.htmlGoogle Scholar