Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T07:48:49.021Z Has data issue: false hasContentIssue false

Processing of astrophysical ices by soft X-rays and swift ions

Published online by Cambridge University Press:  04 September 2018

Sergio Pilling*
Affiliation:
Universidade do Vale do Paraíba (UNIVAP) / Laboratório de Astroquímica e Astrobiologia (LASA), Av. Shishima Hifumi, 2991, CEP: 12244-000, Sao Jose dos Campos, SP, Brazil. email: sergiopilling@yahoo.com.br Instituto Tecnológico de Aeronáutica - ITA / DCTA, Praça Marechal Eduardo Gomes, 50, CEP:12228-900, São José dos Campos, SP, Brazil.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The employment of soft X-rays and swift ions has been used in laboratory to simulate the physicochemical processing of astrophysical ice analogs by energetic photons and cosmic rays. This processing includes excitation, ionization and molecular dissociation, desorption, as well as triggers the formation of new compounds. Here we present some results from experiments employing infrared spectroscopy in two different laboratories: LNLS/CNPEM in Campinas/Brazil and GANIL/CIRIL/CIMAP in Caen/France. Among the results are the formation of alkenes and aromatic compounds during the irradiation of saturated hydrocarbon-containing ices by cosmic ray analogs, the production of the nucleobase adenine during soft X-ray photolysis of N2:CH4 ice, as well as the formation of peptide bonds during the bombardment of frozen glycine by cosmic ray analogs. The interaction between cosmic ray analogs and ionizing soft X-rays probed in the laboratory allows us to identify reaction routes that lead to chemistry enhancement of astrophysical ices and help us put constrains in prebiotic chemistry.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Akkerman, A., Breskin, A., Chechik, R., & Gibrekhterman, A. 1993, in Ionization of Solids by Heavy Particles, ed. R. A. Baragiola, (Berlin: Springer), Vol. 306, 359Google Scholar
Almeida, G. C., Pilling, S., Andrade, D. P. P., et al., 2014, JPCC, 118, 6193Google Scholar
Almeida, G. C., Pilling, S., de Barros, A. L. F., da Costa, C. P., Pereira, R. C., & da Silveira, E. F., 2017, MNRAS, 471, 1330Google Scholar
Andrade, D. P. P., de Barros, A. L. F., Pilling, S., Domaracka, A., Rothard, H., Boduch, P., & da Silveira, E. F., 2013, MNRAS, 787, 796Google Scholar
Baragiola, R. A., Vidal, R. A., Svendsen, A., Schou, J., Shi, M., Bahr, D. A., & Atteberrry, C. L., 2003, Nuclear Instruments and Methods in Physics Research B, 209, 294Google Scholar
Bergantini, A., Pilling, S., Rothard, H., Boduch, P., & Andrade, D. P. P., 2014a, MNRAS, 437, 2720Google Scholar
Bergantini, A., Pilling, S., Nair, B. G., Mason, N. J., & Fraser, H. J., 2014b, A&A, 570, A120Google Scholar
Bernstein, M. P., Dworkin, J. P., Sandford, S. A., et al., 2002, Nature, 416, 401Google Scholar
Bonfim, V. S., Castilho, R. B., Baptista, L., & Pilling, S. 2017, PCCP, AcceptedGoogle Scholar
Boogert, A. C. A., Schutte, W. A., Helmich, F. P., Tielens, A. G. G. M., & Wooden, D. H., 1997, A&A, 317, 929Google Scholar
Boogert, A. C. A., Pontoppidan, K. M., Lahuis, F., et al., 2004, ApJS, 154, 359Google Scholar
Brown, W. L., Augustyniak, W. M., Marcantonio, K. J., et al., 1984, Nucl. Instr. Meth. B1, IV, 307Google Scholar
Cazaux, J., 2006, NIMPB, 244, 307Google Scholar
Chan, W. F., Cooper, G., & Brion, C. E., 1993, Chem. Phys., 178, 387Google Scholar
Chen, Y.-J., Ciaravella, A., Munõz Caro, G. M., et al., 2013, ApJ, 778, 162Google Scholar
de Barros, A. L. F., da Silveira, E. F., Pilling, S., Domaracka, A., Rothard, H., & Boduch, P. 2014, MNRAS, 483, 2026Google Scholar
Dartois, E., Augé, B., Boduch, P., et al., 2015, A&A, 576, A125Google Scholar
Ehrenfreund, P. & Charnley, S. B., 2000, ARA&A, 38, 427Google Scholar
Gibb, E. L., Whittet, D. C. B., & Chiar, J. E., 2001, ApJ, 558, 702Google Scholar
Gullikson, E. M. & Henke, B. L., 1989, PhRvB, 39, 1Google Scholar
Henke, B. L., Liesegang, J., & Smith, S. D., 1979, PhRvB, 19, 3004Google Scholar
Hijazi, H., Rothard, H., Boduch, P., Alzaher, I., Ropars, F., et al., 2011, Nucl. Instr. Meth. Phys. Res. B, 269, 1003Google Scholar
Hüfner, S. 1995, Photoelectron Spectroscopy: Principles and Applications (Berlin: Springer)Google Scholar
Jimenez-Escobar, A., Chen, Y.-J., Ciaravella, A., Huang, C.-H., Micela, G., & Cecchi-Pestellini, C., 2016, ApJ, 820, 25Google Scholar
Kaiser, R. I., Stockton, A. M., Kim, Y. S., Jensen, E. C., & Mathies, R. A., 2013, AJ, 765, 111Google Scholar
Kobayashi, K., Kaneko, T., Takano, Y., et al. 2008, Proc. IAU Symp., 251, 465Google Scholar
Li, A., Greenberg, J. M., 1997, A&A, 323, 566Google Scholar
Maloney, P. R., Hollenbach, D. J., & Tielens, A. G. G. M., 1996, ApJ, 466, 561Google Scholar
McLaren, R., Ishii, I., Hitchcock, A. P., et al., 1987, J. Chem. Phys., 87, 4344Google Scholar
Mejía, C., de Barros, A. L. F., Seperuelo Duarte, E., da Silveira, E. F., Dartois, E., Domaracka, A., Rothard, H., & Boduch, P., 2014, Icarus, 250, 222Google Scholar
Mejía, C., Bender, M., Severin, D., et al., 2015, Nucl. Instrum. Meth. B, 353, 477Google Scholar
Muñoz Caro, G. M., Meierhenrich, U. J., Schutte, W. A., et al., Nature, 416, 403Google Scholar
Öberg, K. I., van Dishoeck, E. F., & Linnartz, H. 2009, A&A, 496, 281Google Scholar
Palumbo, M. E., 2006, A&A, 453, 903Google Scholar
Pilling, S., Andrade, D. P. P., Neto, A. C., Rittner, R., & Brito, A. N., 2009, JPCA, 113, 11161Google Scholar
Pilling, S., Seperuelo Duarte, E., da Silveira, E. F., Balanzat, E., Rothard, H., Domaracka, A., & Boduch, P., 2010a, A&A, 509, A87Google Scholar
Pilling, S., Seperuelo Duarte, E., Domaracka, A., Rothard, H., Boduch, P., & da Silveira, E. F., 2010b, A&A, 523, A77Google Scholar
Pilling, S., Seperuelo-Duarte, E., Domaracka, A., Rothard, H., Boduch, P., & da Silveria, E. F., 2011a, PCCP, 13, 15755Google Scholar
Pilling, S., Andrade, D. P. P., do Nascimento, E. M., Marinho, R. R. T., Boechat-Roberty, H. M., de Coutinho, L. H., de Souza, G. G. B., de Castilho, R. B., Cavasso-Filho, R. L., Lago, A. F., & de Brito, A., 2011b, MNRAS, 411, 2214Google Scholar
Pilling, S. & Andrade, D. P. P. 2012, in X-Ray Spectroscopy, ed. S. K. Sharma (Rijeka: InTech), 185Google Scholar
Pilling, S., Andrade, D. P. P., da Silveira, E. F., Rothard, H., Domaracka, A., & Boduch, P., 2012, MNRAS, 423, 2209Google Scholar
Pilling, S., Mendes, L. A. V., Bordalo, V., Guaman, C. F. M., Ponciano, C. R., & da Silveira, E. F., 2013, Astrobiology, 13, 79Google Scholar
Pilling, S., Nair, B. G., Escobar, A., Fraser, H., & Mason, N., 2014, EPJD, 68, 58Google Scholar
Pilling, S. & Bergantini, A., 2015, ApJ, 811, 151Google Scholar
Portugal, W., Pilling, S., Boduch, P., Rothard, H., & Andrade, D. P. P., 2014, MNRAS, 441, 3209Google Scholar
Prasad, S. S. & Tarafdar, S. P., 1983, ApJ, 267, 603Google Scholar
Rachid, G. M., Faquine, K., & Pilling, S. 2017, PSS, In press, DOI: 10.1016/j.pss.2017.05.003Google Scholar
Reis, E. F., Campos, F. S., Lage, A. P., Leite, R. C., Heneine, L. G., Vasconcelos, W. L., Lobato, Z. I. P., & Mansur, H. S., 2006, Materials Res., 9, 185Google Scholar
Shen, C. J. & Greenberg, J. M., Schutte, W. A., 2004, A&A, 415, 203Google Scholar
Seperuelo-Duarte, E., Boduch, P., Rothard, H., Been, T., Dartois, E., Farenzena, L. S., & da Silveira, E. F., 2009, A&A, 502, 599Google Scholar
Seperuelo-Duarte, E., Domaracka, A., Boduch, P., Rothard, H., Dartois, E., & da Silveira, E. F. 2010, A&A, 512, A71.Google Scholar
Strazzulla, G., Pirronello, V., & Foti, G., 1983, ApJ, 271, 255Google Scholar
Strazzulla, G., Leto, G., Spinella, F., & Gomis, O. 2007, in Kuhs W. F., ed., Proc. 11th Int. Conf. on the Physics and Chemistry of Ice. Royal Society of Chemistry, Cambridge, p. 561Google Scholar
Taylor, A. D., Baggaley, W. J., & Steel, D. I., 1996, Nature, 380, 323Google Scholar
Vasconcelos, F. A., Pilling, S., Rocha, W. R. M., Rothard, H., Boduch, P., & Ding, J. J., 2017a, Phys. Chem. Chem. Phys., 19, 12845Google Scholar
Vasconcelos, F. A., Pilling, S., Rocha, W. R. M., Rothard, H., & Boduch, P., 2017b, Phys. Chem. Chem. Phys, 19, 24154Google Scholar
Vasconcelos, F. A., Pilling, S., Rocha, W. R. M., Rothard, H., & Boduch, P. 2017c, ApJ, submitted.Google Scholar
Witt, A. N., Smith, R. K., & Dwek, E., 2001, ApJ, 550, L201Google Scholar