No CrossRef data available.
Article contents
Prominences: Conference Summary and Suggestions for the Future
Published online by Cambridge University Press: 06 January 2014
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this conclusion to the conference, I shall attempt to summarise what we knew before about solar prominences and what we have learnt during the conference (mainly from the review talks), as well as to make suggestions for their future study.
Keywords
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 8 , Symposium S300: Nature of Prominences and their role in Space Weather , June 2013 , pp. 379 - 387
- Copyright
- Copyright © International Astronomical Union 2013
References
Aulanier, G. & Démoulin, P. (1998). 3-D magnetic configurations supporting prominences. I. The natural presence of lateral feet. Astron. Astrophys. 329, 1125–1137Google Scholar
Aulanier, G., Pariat, E., Démoulin, P., & DeVore, C. R. (2006). Slip-running reconnection in quasi-separatrix layers. Solar Phys. 238, 347–376Google Scholar
Dudík, J., Aulanier, G., Schmieder, B., Zapiór, M., & Heinzel, P. (2012). Magnetic topology of bubbles in quiescent prominences. Astrophys. J. 761, 9Google Scholar
Gunár, S., Heinzel, P., Anzer, U., & Schmieder, B. (2008). On Lyman-line asymmetries in quiescent prominences. Astron. Astrophys. 490, 307–313CrossRefGoogle Scholar
Hillier, A., Hillier, R., & Tripathi, D. (2012). Determination of prominence plasma β from the dynamics of rising plumes. Astrophys. J. 761, 106CrossRefGoogle Scholar
Hillier, A. & van Ballegooijen, A. (2013). On the support of solar prominence material by the dips of a coronal flux tube. Astrophys. J. 766, 126Google Scholar
Khomenko, E., Diaz, A., de Vicente, A., Luna, M., & Collados Vera, M. (2013). Rayleigh-Taylor instability in prominences from numerical simulations including partial ionization effects. IAU Symp. 300Google Scholar
Kusano, K., Bamba, Y., Yamamoto, T. T., Iida, Y., Toriumi, S., & Asai, A. (2012). Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys. J. 760, 31Google Scholar
Longcope, D. W., Beveridge, C., Qiu, J., Ravindra, B., Barnes, G., & Dasso, S. (2007). Modeling and measuring the flux reconnected and ejected by the two-ribbon flare/CME event on 7 November 2004. Solar Phys. 244, 45–73Google Scholar
Mackay, D. H. & van Ballegooijen, A. A. (2005). New results in modeling the hemispheric pattern of solar filaments. Astrophys. J. Letts. 621, L77–L80CrossRefGoogle Scholar
Mandrini, C. H., Démoulin, P., Bagala, L. G., van Driel-Gesztelyi, L., Henoux, J. C., Schmieder, B., & Rovira, M. G. (1997). Evidence of magnetic reconnection from Hα, soft X-ray and photospheric magnetic field observations. Solar Phys. 174, 229–240Google Scholar
Martin, S. F., Bilimoria, R., & Tracadas, P. (1994). Magnetic field configurations basic to filament channels. In Solar Surface Magnetism, Rutten, R. and Schrijver, C., eds. (Springer-Verlag, New York), 303Google Scholar
Masson, S., Pariat, E., Aulanier, G., & Schrijver, C. J. (2009). The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700, 559–578Google Scholar
Nishizuka, N. & Shibata, K. (2013). Fermi acceleration in plasmoids interacting with fast shocks of reconnection via fractal reconnection. Phys. Rev. Letts. 110, 5 (Feb.), 051101CrossRefGoogle ScholarPubMed
Orozco Suárez, D., Asensio Ramos, A., & Trujillo Bueno, J. (2013). Measuring vector magnetic fields in solar prominences. In Highlights of Spanish Astrophysics VII.), 786–791Google Scholar
Priest, E. R., Hood, A. W., & Anzer, U. (1989). A twisted flux-tube model for solar prominences. I. General properties. Astrophys. J. 344, 1010–1025CrossRefGoogle Scholar
Priest, E. R., van Ballegooijen, A. A., & Mackay, D. H. (1996). A model for dextral and sinistral prominences. Astrophys. J. 460, 530–543Google Scholar
Schmieder, B., Chandra, R., Berlicki, A., & Mein, P. (2010). Velocity vectors of a quiescent prominence observed by Hinode/SOT and the MSDP (Meudon). Astron. Astrophys. 514, A68Google Scholar
Schmieder, B., Demoulin, P., Aulanier, G., & Golub, L. (1996). Differential magnetic field shear in an active region. Astrophys. J. 467, 881Google Scholar
Schmieder, B., Malherbe, J. M., Mein, P., & Tandberg-Hanssen, E. (1984). Dynamics of solar filaments. III - Analysis of steady flows in H-alpha and C IV lines. Astron. Astrophys. 136, 81–88Google Scholar
Shibata, K. (1999). Evidence of magnetic reconnection in solar flares and a unified model of flares. Astrophys. and Space Sci. 264, 129–144Google Scholar
Su, Y. & van Ballegooijen, A. (2013). Rotating motions and modeling of the erupting solar polar-crown prominence on 2010 December 6. Astrophys. J. 764, 91Google Scholar
van Ballegooijen, A. A. & Cranmer, S. R. (2010). Tangled magnetic fields in solar prominences. Astrophys. J. 711, 164–178Google Scholar
van Ballegooijen, A. A. & Martens, P. C. H. (1989). Formation and eruption of solar prominences. Astrophys. J. 343, 971–984Google Scholar
van Ballegooijen, A. A., Priest, E. R., & Mackay, D. H. (2000). Mean field model for the formation of filament channels on the Sun. Astrophys. J. 539, 983–994Google Scholar
Yeates, A. R., Mackay, D. H., & van Ballegooijen, A. A. (2008). Modelling the global solar corona. II. Coronal evolution and filament chirality comparison. Solar Phys. 247, 103–121Google Scholar
You have
Access