Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T11:47:54.600Z Has data issue: false hasContentIssue false

Proper stellar directions and astronomical aberration

Published online by Cambridge University Press:  06 January 2010

Mariateresa Crosta
Affiliation:
Osservatorio Astronomico di Torino-INAF email: crosta@oato.inaf.it, vecchiato@oato.inaf.it
Alberto Vecchiato
Affiliation:
Osservatorio Astronomico di Torino-INAF email: crosta@oato.inaf.it, vecchiato@oato.inaf.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The general relativistic definition of astrometric measurement needs an appropriate use of the concept of reference frame, which should then be linked to the conventions of the IAU Resolutions (Soffel et al., 2003), which fix the celestial coordinate system. A consistent definition of the astrometric observables in the context of General Relativity is also essential to find uniquely the stellar coordinates and proper motion, this being the main physical task of the inverse ray tracing problem. Aim of this work is to set the level of reciprocal consistency of two relativistic models, GREM and RAMOD (Gaia, ESA mission), in order to guarantee a physically correct definition of light direction to a star, an essential item for deducing the star coordinates and proper motion within the same level of measurement accuracy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Soffel, M., Klioner, S. A., Petit, G., Wolf, P., Kopeikin, S. M., Bretagnon, P., Brumberg, V. A., Capitaine, N., Damour, T., Fukushima, T. et al. , 2003, Astron. J., 126, 2687CrossRefGoogle Scholar
Eds. Turon, C., O'Flaherty, K. S., & Perryman, M. A. C., 2005, The Three-Dimensional Universe with Gaia, Publ. Astron. Soc. Pac., 120, 38Google Scholar
Bini, D., Crosta, M., & de Felice, F. 2003, Class. Quantum Grav., 20, 4695CrossRefGoogle Scholar
de Felice, F., crosta, M., Vecchiato, A., Lattanzi, M. G., & Bucciarelli, B., 2004, Astrophys. J., 607, 580.CrossRefGoogle Scholar
de Felice, F., Vecchiato, A., Crosta, M., Lattanzi, M. G., & Bucciarelli, B., 2006 Astrophys. J., 653, 1552CrossRefGoogle Scholar
de Felice, F & Preti, G., 2006, Class. Quantum Grav., 23, 5467CrossRefGoogle Scholar
Klioner, S. A., 2003 Astron. J., 125, 1580CrossRefGoogle Scholar
Gravitation, Misner C. W., Thorne, K. S., & Wheeler, J. A., 1973 San Francisco: W.H. Freeman and Co.Google Scholar
Jantzen, R. T., Carini, P., Bini, D., 1992 Ann. Phys., 215, 1CrossRefGoogle Scholar
Klioner, S. A., 2004 Phys. Rev. D, 69, 124001CrossRefGoogle Scholar