Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-11T05:33:45.063Z Has data issue: false hasContentIssue false

Pulsation – convection interaction

Published online by Cambridge University Press:  18 February 2014

F. Kupka
Affiliation:
Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090, Vienna, Austria
E. Mundprecht
Affiliation:
Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090, Vienna, Austria
H. J. Muthsam
Affiliation:
Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090, Vienna, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A lot of effort has been devoted to the hydrodynamical modelling of Cepheids in one dimension. While the recovery of the most basic properties such as the pulsational instability itself has been achieved already a long time ago, properties such as the observed double-mode pulsation of some objects and the red-edge of the classical instability strip and their dependence on metallicity have remained a delicate issue. The uncertainty introduced by adjustable parameters and further physical approximations introduced in one-dimensional model equations motivate an investigation based on numerical simulations which use the full hydrodynamical equations. In this talk, results from such two-dimensional numerical simulations of a short period Cepheid are presented. The importance of a carefully designed numerical setup, in particular of sufficient resolution and domain extent, is discussed. The problematic issue of how to reliably choose fixed parameters for the one-dimensional model is illustrated. Results from an analysis of the interaction of pulsation with convection are shown concerning the large-scale structure of the He ii ionization zone. We also address the influence of convection on the atmospheric structure. Considering the potential of hydrodynamical simulations and the wealth of ever improving observational data an outlook on possible future work in this field of research is given.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Buchler, J. R. 2009, AIP-CP, 1170, 61Google Scholar
Buchler, J. R. & Kolláth, Z. 2000, Annals New York Academy of Sciences, 898, 39Google Scholar
Buchler, J. R. & Szabó, R. 2007, ApJ, 660, 723Google Scholar
Cassisi, S. & Salaris, M. 2011, ApJ, 728, L43Google Scholar
de Grijs, R. 2011, An Introduction to Distance Measurement in Astronomy (New York: Wiley)Google Scholar
Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005, ApJ, 623, 585Google Scholar
Feuchtinger, M. U. 1998, A&A, 337, L29Google Scholar
Gastine, T. & Dintrans, B. 2011a, A&A, 528, A6Google Scholar
Gastine, T. & Dintrans, B. 2011b, A&A, 530, L7Google Scholar
Geroux, C. M. & Deupree, R. G. 2011, ApJ, 731, 18Google Scholar
Geroux, C. M. & Deupree, R. G. 2013, ApJ, 771, 113Google Scholar
Grimm-Strele, H., Kupka, F., Löw-Baselli, B., Mundprecht, E., Zaussinger, F., & Schiansky, P. 2013, arXiv: 1305.0743Google Scholar
Grevesse, N. & Noels, A. 1993, in: Prantzos, N., Vangioni-Flam, E. & Casse, M. (eds.), Origin and Evolution of the Elements, p. 15Google Scholar
Guggenberger, E., Kolenberg, K., Nemec, J. M., et al. 2012, MNRAS, 424, 649Google Scholar
Happenhofer, N., Grimm-Strele, H., Kupka, F., Löw-Baselli, B., & Muthsam, H. 2013, J. Comput. Phys., 236, 96Google Scholar
Happenhofer, N. 2013, Ph.D. thesis, University of Vienna, to be submittedGoogle Scholar
Higueras, I., Happenhofer, N., Koch, O., & Kupka, F. 2012, ASC Report 14/2012 (Vienna University of Technology, Vienna) (http://www.asc.tuwien.ac.at/preprint/2012/asc14x2012.pdf)Google Scholar
Iglesias, C. A. & Rogers, F. J. 1996, ApJ, 464, 943Google Scholar
Keller, S. C. 2008, ApJ, 677, 683Google Scholar
Klagyivik, P., Szabados, L., Szing, A., Leccia, S., & Mowlavi, N. 2013, MNRAS, 434, 2418Google Scholar
Kolláth, Z., Beaulieu, J. P., Buchler, J. R., & Yecko, P. 1998, ApJ, 502, L55Google Scholar
Kupka, F., Ballot, J., & Muthsam, H. J. 2009, CoAst, 160, 30Google Scholar
Luck, R. E., Andrievsky, S. M., Korotin, S. N., & Kovtyukh, V. V. 2013, AJ, 146, 18Google Scholar
Mundprecht, E. 2011, Ph.D. Thesis, University of ViennaGoogle Scholar
Mundprecht, E., Muthsam, H. J., & Kupka, F. 2013, MNRAS, 435, 3191CrossRefGoogle Scholar
Muthsam, H. J., Kupka, F., Löw-Baselli, B., Obertscheider, C., Langer, M., & Lenz, P. 2010, New Astron., 15, 460Google Scholar
Pietrzyński, G., Thompson, I. B., Gieren, W., et al. 2010, Nature, 486, 542Google Scholar
Pilecki, B., Graczyk, D., Pietrzyński, G., et al. 2013, MNRAS, 436, 953Google Scholar
Rogers, F. J., Swenson, F. J., & Iglesias, C. A. 1996, ApJ, 456, 902Google Scholar
Rogers, F. J. & Nayfonov, A. 2002, ApJ, 576, 1064Google Scholar
Smolec, R. & Moskalik, P. 2008a, AcA, 58, 193Google Scholar
Smolec, R. & Moskalik, P. 2008b, AcA, 58, 233Google Scholar
Smolec, R. & Moskalik, P. 2010, A&A, 524, A40Google Scholar
Soszyński, I., Poleski, R., Udalski, A., et al. 2008, AcA, 58, 163Google Scholar
Stobie, R. S. 1969, MNRAS, 144, 485Google Scholar
Takeda, Y., Kang, D.-I., Han, I., Lee, B.-C., & Kim, K.-M. 2013, MNRAS, 432, 769Google Scholar