No CrossRef data available.
Published online by Cambridge University Press: 12 October 2016
Quasars, as the most luminous persistent sources in the Universe, have broad applications for cosmological studies. In particular, they can be employed to directly measure the expansion history of the Universe, similarly to SNe Ia. The advantage of quasars is that they are numerous, cover a broad range of redshifts, up to z = 7, and do not show significant evolution of metallicity with redshift. The idea is based on the relation between the time delay of an emission line and the continuum, and the absolute monochromatic luminosity of a quasar. For intermediate redshift quasars, the suitable line is Mg II. Between December 2012 and March 2014, we performed five spectroscopic observations of the QSO CTS C30.10 (z = 0.900) using the South African Large Telesope (SALT), supplemented with photometric monitoring, with the aim of determining the variability of the line shape, changes in the total line intensity and in the continuum. We show that the method is very promising.