Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T05:43:37.575Z Has data issue: false hasContentIssue false

Questions about the evolution of ices, from diffuse molecular clouds to comets

Published online by Cambridge University Press:  12 October 2020

A. C. A. Boogert*
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI96822, USA email: aboogert@hawaii.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The surfaces of interstellar and circumstellar dust grains are the sites of molecule formation, most of which, except H2, stick and form ice mantles. The study of ice evolution thus seems directly relevant for understanding our own origins, although the relation between interstellar and solar system ices remains a key question. The comparison of interstellar and solar system ices relies evidently on an accurate understanding of the composition and processes in both environments. With the accurate in situ measurements available for the comet 67P/Churyumov-Gerasimenko with the Rosetta mission, improving our understanding of interstellar ices is the more important. Here, I will address three specific questions. First, while laboratory experiments have made much progress in understanding complex organic molecule (COM) formation in the ices, the question remains, how does COM formation depend on environment and time? Second, what is the carrier of sulfur in the ices? And third, can ice absorption bands trace the processing history of the ices? Laboratory experiments, ranging from infrared spectroscopy to identify interstellar ice species, to surface experiments to determine reaction parameters in ice formation scenarios, to heating and irradiation experiments to simulate space environments, are essential to address these questions and analyze the flood of new observational data that will become available with new facilities in the next 2-10 years.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Barr, A., Boogert, A., DeWitt, C., et al. 2018, ApJL, 868, 2 CrossRefGoogle Scholar
Blake, G. A., Sutton, E. C., Masson, C. R., et al. 1987, ApJ, 315, 621 CrossRefGoogle Scholar
Boogert, A. C. A., Huard, T. L., Cook, A. M., et al. 2011, ApJ, 729, 92 CrossRefGoogle Scholar
Boogert, A. C. A., Gerakines, P. A., & Whittet, D. C. B. 2015, ARA&A, 53, 541 CrossRefGoogle Scholar
Calmonte, U., Altwegg, K., Balsiger, H., et al. 2016, MNRAS, 462, 253 CrossRefGoogle Scholar
Charnley, S. B. 1997, ApJ, 481, 396 CrossRefGoogle Scholar
Cuppen, H. M., van Dishoeck, E. F., Herbst, E., et al. 2009, A&A, 508, 275 Google Scholar
Doré, O., Werner, M. W., Ashby, M., et al. 2016, arXiv e-prints, arXiv:1606.07039Google Scholar
Dungee, R., Boogert, A., DeWitt, C., et al. 2018, ApJL, 868, 10 CrossRefGoogle Scholar
Fedoseev, G., Cuppen, H. M., Ioppolo, S., et al. 2015, MNRAS, 448, 1288 CrossRefGoogle Scholar
Gerakines, P. A., Schutte, W. A., & Ehrenfreund, P. 1996, A&A, 312, 289 Google Scholar
He, J., Emtiaz, S. M., Boogert, A., & Vidali, G. 2018, ApJ, 869, 41 CrossRefGoogle Scholar
Hollenbach, D., Kaufman, M. J., Bergin, E. A., et al. 2009, ApJ, 690, 1497 CrossRefGoogle Scholar
Hudson, R. L. & Gerakines, P. A. 2018, ApJ, 867, 138 CrossRefGoogle Scholar
Linnartz, H., Ioppolo, S., & Fedoseev, G. 2015, Int. Rev. Phys. Chem., 34, issue 2, 205 CrossRefGoogle Scholar
McClure, M., Bailey, J., Beck, T., et al. 2017, JWST Proposal ID 1309. Cycle 0 Early Release Science, 1309Google Scholar
Öberg, K. I., Boogert, A. C. A., Pontoppidan, K. M., et al. 2008, ApJ, 678, 1032 CrossRefGoogle Scholar
Öberg, K. I., Boogert, A. C. A., Pontoppidan, K. M., et al. 2011, ApJ, 740, 109 CrossRefGoogle Scholar
Palumbo, M. E., Geballe, T. R., & Tielens, A. G. G. M. 1997, ApJ, 479, 839 CrossRefGoogle Scholar
Pontoppidan, K. M., van Dishoeck, E. F., & Dartois, E. 2004, A&A, 426, 925 Google Scholar
Pontoppidan, K. M., Boogert, A. C. A., Fraser, H. J., et al. 2008, ApJ, 678, 1005 CrossRefGoogle Scholar
Qasim, D., Chuang, K.-J., Fedoseev, S., et al. 2018, A&A, 612, 83 Google Scholar
Smith, R. G. 1991, MNRAS, 249, 172 CrossRefGoogle Scholar
Snow, T. P. & McCall, B. J. 2006, ARA&A, 44, 367 CrossRefGoogle Scholar
Stutz, A. M., Bourke, T. L., Rieke, G. H., et al. 2009, ApJL, 690, 35 CrossRefGoogle Scholar
Terwisscha van Scheltinga, J., Ligterink, N. F. W., Boogert, A. C. A., van Dishoeck, E. F., & Linnartz, H. 2018, A&A, 611, 35 Google Scholar