Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T19:17:27.306Z Has data issue: false hasContentIssue false

The radial extent of the Galactic thick disk

Published online by Cambridge University Press:  21 March 2017

Thomas Bensby*
Affiliation:
Lund Observatory, Box 43, SE-221 00 Lund, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Based on observational data from the fourth internal data release of the Gaia-ESO Survey we probe the abundance structure in the Milky Way stellar disk as a function of galactocentric radius and height above the plane. We find that the inner and outer Galactic disks have different chemical signatures. The stars in the inner Galactic disk show abundance signatures of both the thin and thick disks, while the stars in the outer Galactic disk resemble in majority the abundances seen in the thin disk. Assuming that the Galactic thick disk can be associated with the α-enriched population, this can be interpreted as that the thick disk density drops drastically beyond a galactocentric radius of about 10 kpc. This is in agreement with recent findings that the thick disk has a short scale-length, shorter than that of the the thin disk.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Adibekyan, V. Z., Sousa, S. G., Santos, N. C., et al. 2012, A&A, 545, A32 Google Scholar
Bensby, T., Alves-Brito, A., Oey, M. S., Yong, D., & Meléndez, J. 2010, A&A, 516, L13 Google Scholar
Bensby, T., Alves-Brito, A., Oey, M. S., Yong, D., & Meléndez, J. 2011, ApJL, 735, L46 Google Scholar
Bensby, T., Feltzing, S., & Oey, M. S. 2014, A&A, 562, A71 Google Scholar
Bovy, J. & Rix, H.-W. 2013, ApJ, 779, 115 Google Scholar
Cheng, J. Y., Rockosi, C. M., Morrison, H. L., et al. 2012, ApJ, 752, 51 Google Scholar
Comerón, S., Elmegreen, B. G., Salo, H., et al. 2012, ApJ, 759, 98 Google Scholar
Dalton, G., Trager, S., Abrams, D. C., et al. 2014, in SPIE Conf. Ser., Vol. 9147, 91470L Google Scholar
de Jong, R. S., Barden, S., Bellido-Tirado, O., et al. 2014, in SPIE Conf. Ser., Vol. 9147, 91470M Google Scholar
De Silva, G. M., Freeman, K. C., Bland-Hawthorn, J., et al. 2015, MNRAS, 449, 2604 Google Scholar
Fuhrmann, K. 1998, A&A, 338, 161 Google Scholar
Gilmore, G., Randich, S., Asplund, M., et al. 2012, The Messenger, 147, 25 Google Scholar
Gilmore, G. & Reid, N. 1983, MNRAS, 202, 1025 Google Scholar
Hayden, M. R., Bovy, J., Holtzman, J. A., et al. 2015, ApJ, 808, 132 Google Scholar
Jurić, M., Ivezić, Ž., Brooks, A., et al. 2008, ApJ, 673, 864 Google Scholar
Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2015, arXiv:1509.05420 [astro-ph.IM]Google Scholar
Perryman, M. A. C., de Boer, K. S., Gilmore, G., et al. 2001, A&A, 369, 339 Google Scholar
Reddy, B. E., Lambert, D. L., & Allende, Prieto C. 2006, MNRAS, 367, 1329 Google Scholar
Stonkute, E., Koposov, S. E., Howes, L. M., et al. 2016, arXiv:1605.00515 [astro-ph.GA]Google Scholar